找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide

[復制鏈接]
查看: 49715|回復: 62
樓主
發(fā)表于 2025-3-21 20:06:13 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Advances in Swarm Intelligence
期刊簡稱4th International Co
影響因子2023Ying Tan,Yuhui Shi,Hongwei Mo
視頻videohttp://file.papertrans.cn/150/149948/149948.mp4
發(fā)行地址Fast track conference proceedings.Unique visibility.State of the art research
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Swarm Intelligence; 4th International Co Ying Tan,Yuhui Shi,Hongwei Mo Conference proceedings 2013 Springer-Verlag Berlin Heide
影響因子This book and its companion volume, LNCS vols. 7928 and 7929 constitute the proceedings of the 4th International Conference on Swarm Intelligence, ICSI 2013, held in Harbin, China in June 2013. The 129 revised full papers presented were carefully reviewed and selected from 268 submissions. The papers are organized in 22 cohesive sections covering all major topics of swarm intelligence research and developments. The following topics are covered in this volume: analysis of swarm intelligence based algorithms, particle swarm optimization, applications of particle swarm optimization algorithms, ant colony optimization algorithms, biogeography-based optimization algorithms, novel swarm-based search methods, bee colony algorithms, differential evolution, neural networks, fuzzy methods, evolutionary programming and evolutionary games.
Pindex Conference proceedings 2013
The information of publication is updating

書目名稱Advances in Swarm Intelligence影響因子(影響力)




書目名稱Advances in Swarm Intelligence影響因子(影響力)學科排名




書目名稱Advances in Swarm Intelligence網絡公開度




書目名稱Advances in Swarm Intelligence網絡公開度學科排名




書目名稱Advances in Swarm Intelligence被引頻次




書目名稱Advances in Swarm Intelligence被引頻次學科排名




書目名稱Advances in Swarm Intelligence年度引用




書目名稱Advances in Swarm Intelligence年度引用學科排名




書目名稱Advances in Swarm Intelligence讀者反饋




書目名稱Advances in Swarm Intelligence讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:35:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:05:31 | 只看該作者
地板
發(fā)表于 2025-3-22 06:58:06 | 只看該作者
5#
發(fā)表于 2025-3-22 12:06:03 | 只看該作者
Conception optimale de structures data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.
6#
發(fā)表于 2025-3-22 16:37:34 | 只看該作者
,Introduction à l’optimisation de formes,e, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.
7#
發(fā)表于 2025-3-22 17:22:53 | 只看該作者
8#
發(fā)表于 2025-3-23 00:28:47 | 只看該作者
Cask Theory Based Parameter Optimization for Particle Swarm Optimizationt can be used to search the tuned parameters such as inertia weight ., acceleration coefficients c. and c., and so on. This method considers the cask theory to achieve a better optimization performance. Several famous benchmarks were used to validate the proposed method and the simulation results showed the efficiency of the proposed method.
9#
發(fā)表于 2025-3-23 03:54:16 | 只看該作者
A Piecewise Linearization Method of Significant Wave Height Based on Particle Swarm Optimization data, and then the particle swarm optimization algorithm is applied for piecewise area division and parameter optimization of the model. Simulation result shows that compared with traditional inversion method, better practicability and the higher significant wave height inversion precision are obtained by the proposed method.
10#
發(fā)表于 2025-3-23 07:59:32 | 只看該作者
Parameter Identification of RVM Runoff Forecasting Model Based on Improved Particle Swarm Optimizatie, and its model parameters is optimized by an improved PSO algorithm. The monthly runoff time series from 1953 to 2003 at Manwan station is selected as an example. The results show that the improved PSO has efficient optimization performance and the proposed forecasting model could obtain higher prediction accuracy.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 09:32
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秦皇岛市| 牡丹江市| 海丰县| 柘荣县| 新源县| 白沙| 磐石市| 永仁县| 邮箱| 湖口县| 绿春县| 怀柔区| 天全县| 五家渠市| 体育| 舒兰市| 察哈| 中卫市| 阿拉尔市| 贵定县| 嘉禾县| 余干县| 响水县| 临泽县| 桂林市| 庆安县| 横山县| 樟树市| 江华| 右玉县| 阿拉善盟| 萨迦县| 凤山市| 来凤县| 定西市| 永丰县| 南溪县| 巩留县| 安康市| 长武县| 屯门区|