找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Robot Kinematics: Analysis and Design; Jadran Lenar?i?,Philippe Wenger Book 2008 Springer Science+Business Media B.V. 2008 Hub

[復制鏈接]
樓主: GUST
51#
發(fā)表于 2025-3-30 10:35:13 | 只看該作者
52#
發(fā)表于 2025-3-30 13:42:33 | 只看該作者
A New Assessment of Singularities of Parallel Kinematic ChainsAn exhaustive hierarchical-level-based classification of singularities of parallel kinematic chains is presented. Singular events are identified, interpreted and related to the direct physical phenomena originating them. An in-depth study of the interaction of different types of singularity is performed.
53#
發(fā)表于 2025-3-30 17:33:14 | 只看該作者
54#
發(fā)表于 2025-3-30 23:54:06 | 只看該作者
55#
發(fā)表于 2025-3-31 03:47:17 | 只看該作者
Differentiation and initial value problemsn its joints, possibly leading to its breakdown. This issue is clearly a very practical problem and we present in this paper an algorithm which computes the . of a planar parallel robot for a given orientation i.e. the set of location of the platform at which the absolute value of all joint forces a
56#
發(fā)表于 2025-3-31 07:34:06 | 只看該作者
Differentiation and initial value problemstivity, overconstraint and redundancy of parallel robots, recently proposed by the author, are used to characterize the constraint singularities. By using these formulae, we demonstrate that in a constraint singularity the instantaneous values of the mobility, connectivity of the moving platform and
57#
發(fā)表于 2025-3-31 12:38:49 | 只看該作者
58#
發(fā)表于 2025-3-31 13:46:21 | 只看該作者
59#
發(fā)表于 2025-3-31 20:52:38 | 只看該作者
Exact Muffin-tin Orbitals Methodlgebra. The proposed tool is interactive and introduces the designer to the singularity analysis performed by this method, showing all the stages along the procedure and eventually showing the solution algebraically and graphically, allowing as well the singularity verification of different robot po
60#
發(fā)表于 2025-4-1 00:25:07 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-19 17:01
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
邢台市| 玛纳斯县| 利津县| 五河县| 阳原县| 喀喇| 临西县| 峨山| 高陵县| 麦盖提县| 龙海市| 黄骅市| 安仁县| 钟山县| 仁化县| 定襄县| 天峨县| 波密县| 北安市| 甘洛县| 宣化县| 鄂伦春自治旗| 阿拉善左旗| 集安市| 石门县| 岐山县| 曲阳县| 沧州市| 祁连县| 宣武区| 保亭| 常山县| 正镶白旗| 南京市| 白山市| 丰原市| 宝坻区| 静宁县| 棋牌| 临沧市| 舞阳县|