找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
41#
發(fā)表于 2025-3-28 14:53:04 | 只看該作者
https://doi.org/10.1007/978-3-031-51224-7 for all . We examine the singularities of the scattering kernel . defined as the Fourier transform of the scattering amplitude . related to the Dirichlet problem for the wave equation in . = R. . We prove that if . is trapping and . is nondegenerate, then there exist reflecting .-rays . with sojou
42#
發(fā)表于 2025-3-28 21:12:30 | 只看該作者
43#
發(fā)表于 2025-3-28 23:39:01 | 只看該作者
Complex Systems and Their Applicationses, 2007]) to algebras of matrices, first of finite rank and then of infinite rank. The resulting differential equations in these algebras can only make sense in a noncommutative setup, as the basic “space derivation” is commutation with another (fixed) matrix. The infinite rank situation is reinter
44#
發(fā)表于 2025-3-29 04:25:40 | 只看該作者
45#
發(fā)表于 2025-3-29 08:02:11 | 只看該作者
46#
發(fā)表于 2025-3-29 15:28:01 | 只看該作者
https://doi.org/10.1007/978-3-031-51224-7Solutions to weakly hyperbolic Cauchy problems contain as one of the most important properties the so-called .. Recently authors have begun to understand how to show that the loss really appears. In this note we describe several models and explain different ways how to attack the question that a . loss of regularity really appears.
47#
發(fā)表于 2025-3-29 17:52:04 | 只看該作者
48#
發(fā)表于 2025-3-29 21:37:43 | 只看該作者
49#
發(fā)表于 2025-3-30 03:15:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:25:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 营口市| 正宁县| 元江| 黔南| 深圳市| 循化| 武义县| 汕尾市| 舞阳县| 嘉善县| 新丰县| 离岛区| 玛纳斯县| 自贡市| 女性| 泽州县| 民和| 广东省| 长治县| 富宁县| 松滋市| 奇台县| 新乡市| 东城区| 柯坪县| 衡南县| 和硕县| 兴化市| 宁明县| 花莲市| 五河县| 彭山县| 井陉县| 马鞍山市| 静海县| 淅川县| 桃江县| 怀集县| 班玛县| 阿拉善右旗|