找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Phase Space Analysis of Partial Differential Equations; In Honor of Ferrucci Antonio Bove,Daniele Del Santo,M.K. Venkatesha Mur

[復(fù)制鏈接]
樓主: 相持不下
21#
發(fā)表于 2025-3-25 05:14:27 | 只看該作者
Complexification in the Energiewendecs of its hamiltonian flow which imply: 1. The operator .. is essentially self-adjoint and the propagators .. are bounded between (conveniently related) generalized Sobolev spaces. 2. The propagators .. are generalized Fourier integral operators.
22#
發(fā)表于 2025-3-25 09:31:41 | 只看該作者
Forward Look at Research Perspectives,ectly the classical decay estimates with sharp bounds. Although the computations are elementary and the definition of the Oseen kernels goes back to the 1911 paper of this author, we were not able to find the simple explicit expression below in the literature.
23#
發(fā)表于 2025-3-25 12:22:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:05:47 | 只看該作者
25#
發(fā)表于 2025-3-25 22:29:40 | 只看該作者
Advances in Phase Space Analysis of Partial Differential Equations978-0-8176-4861-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
26#
發(fā)表于 2025-3-26 00:28:49 | 只看該作者
Dania A. El-Kebbe,Christoph Dannemost every . with respect to the perimeter measure of ., some tangent of . at . is a vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra Cassano in step 2 Carnot groups.
27#
發(fā)表于 2025-3-26 07:26:29 | 只看該作者
Sophie Baudic,Gérard H. E. Duchampive index on H. in terms of the heat kernel. That characterization can be extended to positive indexes using Bernstein inequalities. As a corollary we obtain a proof of refined Sobolev inequalities in . spaces.
28#
發(fā)表于 2025-3-26 12:24:55 | 只看該作者
Franco Ruzzenenti,Brian D. Fathperbolic symmetrizer, its relationships with the concept of Bezout matrix, its perturbations which originate the so–called quasi-symmetrizer and its applications to Cauchy problems for linear weakly hyperbolic equations.
29#
發(fā)表于 2025-3-26 13:12:32 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霞浦县| 青田县| 昌吉市| 垦利县| 北川| 富宁县| 正阳县| 石景山区| 喜德县| 鄯善县| 阿鲁科尔沁旗| 新竹县| 泰州市| 湛江市| 湘阴县| 揭阳市| 长沙市| 阳东县| 福安市| 宁南县| 天镇县| 大关县| 林州市| 土默特右旗| 宁河县| 镇康县| 静海县| 洞头县| 铅山县| 岳普湖县| 拜泉县| 贺州市| 淳化县| 密云县| 招远市| 炎陵县| 新津县| 民丰县| 白朗县| 英吉沙县| 本溪|