找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[復制鏈接]
樓主: Roosevelt
41#
發(fā)表于 2025-3-28 16:44:15 | 只看該作者
More Efficient, Adaptive and Stable, A?Virtual Fitting System Using Kinectrallelism method to accelerate constraint resolving and collision detection. As a result, our system can provide realistic effects for the virtual fitting while meeting the real-time and robustness requirements.
42#
發(fā)表于 2025-3-28 20:31:32 | 只看該作者
43#
發(fā)表于 2025-3-29 01:06:04 | 只看該作者
44#
發(fā)表于 2025-3-29 03:42:37 | 只看該作者
Cooperative Differential Games,ime surveillance. This paper presents an effective method based on fully convolutional network (FCN), density-based spatial clustering of applications with noise (DBSCAN) and non-maximum suppression (NMS) algorithm. Our proposed approach captures the thermal face features automatically using FCN. Th
45#
發(fā)表于 2025-3-29 08:30:49 | 只看該作者
,Non—Cooperative Differential Games,t proposal method on RGB-D images with the constraint of depth connectivity, which can improve the key techniques in grouping based object proposal effectively, including segment generation, hypothesis expansion and candidate ranking. Given an RGB-D image, we first generate segments using depth awar
46#
發(fā)表于 2025-3-29 14:08:34 | 只看該作者
Masatoshi Sakawa,Ichiro Nishizakio roughly locate the salient object, which is combined with the color and texture to construct the feature space. Based on the feature space and fast background connection, a novel graph is put forward to effectively obtain the local and global cues and ease the blurry surrounds of the saliency maps
47#
發(fā)表于 2025-3-29 18:09:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:33:56 | 只看該作者
Misa Aoki,Taiki Kagami,Takashi Sugimoto of BoVW, we address this issue by proposing an efficient feature selection method for SAR target classification. First, Graphic Histogram of oriented Gradients (HOG) based features is adopted to extract features from the training SAR images. Second, a discriminative codebook is generated using K-me
49#
發(fā)表于 2025-3-30 01:04:06 | 只看該作者
Julio C. Gambina,Gabriela Roffinelliannel deep residual network to classify fine-art painting images. In detail, we take the advantage of the ImageNet to pre-train the deep residual network. Our two channels include the RGB channel and the brush stroke information channel. The gray-level co-occurrence matrix is used to detect the brus
50#
發(fā)表于 2025-3-30 04:12:01 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 00:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秦皇岛市| 尚志市| 明水县| 舒城县| 阿荣旗| 杨浦区| 神木县| 云阳县| 沁阳市| 介休市| 邻水| 昆明市| 句容市| 紫云| 罗平县| 娱乐| 德庆县| 图木舒克市| 龙江县| 江津市| 府谷县| 安宁市| 湖州市| 丹江口市| 会宁县| 潮安县| 大足县| 社旗县| 镇雄县| 枣强县| 会泽县| 诸城市| 攀枝花市| 华蓥市| 寿光市| 古交市| 武定县| 稻城县| 金堂县| 黄浦区| 皮山县|