找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[復(fù)制鏈接]
樓主: Roosevelt
11#
發(fā)表于 2025-3-23 13:14:33 | 只看該作者
An Introduction to Cooperativesxperimental results demonstrate that our method significantly outperform previous baseline SCRC (Spatial Context Recurrent ConvNet) [.] model on Referit dataset [.], moreover, our model is simple to train similar to Faster R-CNN.
12#
發(fā)表于 2025-3-23 17:54:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:11:53 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:13 | 只看該作者
An Efficient Feature Selection for SAR Target Classificationnt features. Finally, for target classification, SVM is used as a baseline classifier. Experiments on MSTAR public release dataset are conducted, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.
17#
發(fā)表于 2025-3-24 11:44:17 | 只看該作者
Automatic Foreground Seeds Discovery for Robust Video Saliency Detectionobal object appearance model using the initial seeds and remove unreliable seeds according to foreground likelihood. Finally, the seeds work as queries to rank all the superpixels in images to generate saliency maps. Experimental results on challenging public dataset demonstrate the advantage of our algorithm over state-of-the-art algorithms.
18#
發(fā)表于 2025-3-24 18:34:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:37 | 只看該作者
Object Discovery and Cosegmentation Based on Dense Correspondencessides, due to the powerful feature learning ability of deep models, we adopt VGG features to do unsupervised clustering and find representative candidates as a prior knowledge. Experiments on noisy datasets show the effectiveness of our method.
20#
發(fā)表于 2025-3-24 23:38:08 | 只看該作者
Fusing Appearance Features and Correlation Features for Face Video Retrievalnd hash learning into a unified optimization framework to guarantee optimal compatibility of appearance features and correlation features. Experiments on two challenging TV-Series datasets demonstrate the effectiveness of the proposed method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 00:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠来县| 灌南县| 府谷县| 安多县| 乐清市| 长垣县| 武邑县| 甘泉县| 威远县| 宜兴市| 滨州市| 尉犁县| 勐海县| 房山区| 咸丰县| 威宁| 泰安市| 库车县| 滕州市| 吉木萨尔县| 惠安县| 邵阳市| 阆中市| 九寨沟县| 化德县| 昆山市| 若羌县| 昌都县| 衡东县| 巴林右旗| 巩留县| 教育| 西吉县| 革吉县| 株洲市| 磐石市| 大兴区| 武鸣县| 唐山市| 诸城市| 凤冈县|