找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[復(fù)制鏈接]
樓主: Roosevelt
41#
發(fā)表于 2025-3-28 16:44:15 | 只看該作者
More Efficient, Adaptive and Stable, A?Virtual Fitting System Using Kinectrallelism method to accelerate constraint resolving and collision detection. As a result, our system can provide realistic effects for the virtual fitting while meeting the real-time and robustness requirements.
42#
發(fā)表于 2025-3-28 20:31:32 | 只看該作者
43#
發(fā)表于 2025-3-29 01:06:04 | 只看該作者
44#
發(fā)表于 2025-3-29 03:42:37 | 只看該作者
Cooperative Differential Games,ime surveillance. This paper presents an effective method based on fully convolutional network (FCN), density-based spatial clustering of applications with noise (DBSCAN) and non-maximum suppression (NMS) algorithm. Our proposed approach captures the thermal face features automatically using FCN. Th
45#
發(fā)表于 2025-3-29 08:30:49 | 只看該作者
,Non—Cooperative Differential Games,t proposal method on RGB-D images with the constraint of depth connectivity, which can improve the key techniques in grouping based object proposal effectively, including segment generation, hypothesis expansion and candidate ranking. Given an RGB-D image, we first generate segments using depth awar
46#
發(fā)表于 2025-3-29 14:08:34 | 只看該作者
Masatoshi Sakawa,Ichiro Nishizakio roughly locate the salient object, which is combined with the color and texture to construct the feature space. Based on the feature space and fast background connection, a novel graph is put forward to effectively obtain the local and global cues and ease the blurry surrounds of the saliency maps
47#
發(fā)表于 2025-3-29 18:09:56 | 只看該作者
48#
發(fā)表于 2025-3-29 22:33:56 | 只看該作者
Misa Aoki,Taiki Kagami,Takashi Sugimoto of BoVW, we address this issue by proposing an efficient feature selection method for SAR target classification. First, Graphic Histogram of oriented Gradients (HOG) based features is adopted to extract features from the training SAR images. Second, a discriminative codebook is generated using K-me
49#
發(fā)表于 2025-3-30 01:04:06 | 只看該作者
Julio C. Gambina,Gabriela Roffinelliannel deep residual network to classify fine-art painting images. In detail, we take the advantage of the ImageNet to pre-train the deep residual network. Our two channels include the RGB channel and the brush stroke information channel. The gray-level co-occurrence matrix is used to detect the brus
50#
發(fā)表于 2025-3-30 04:12:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼玛县| 乐安县| 丽水市| 历史| 县级市| 赤水市| 江都市| 铜陵市| 东明县| 大方县| 日土县| 烟台市| 合江县| 镇巴县| 桃园市| 博湖县| 平果县| 云浮市| 河南省| 呼和浩特市| 来安县| 鄂伦春自治旗| 黄山市| 轮台县| 南宁市| 辽阳县| 通渭县| 荥经县| 靖江市| 镇康县| 临沂市| 彭水| 金阳县| 额济纳旗| 内乡县| 马龙县| 邢台市| 蚌埠市| 南昌县| 清镇市| 山丹县|