找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Multimedia Information Processing – PCM 2017; 18th Pacific-Rim Con Bing Zeng,Qingming Huang,Xiaopeng Fan Conference proceedings

[復制鏈接]
樓主: Roosevelt
11#
發(fā)表于 2025-3-23 13:14:33 | 只看該作者
An Introduction to Cooperativesxperimental results demonstrate that our method significantly outperform previous baseline SCRC (Spatial Context Recurrent ConvNet) [.] model on Referit dataset [.], moreover, our model is simple to train similar to Faster R-CNN.
12#
發(fā)表于 2025-3-23 17:54:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:11:53 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:29 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:10:13 | 只看該作者
An Efficient Feature Selection for SAR Target Classificationnt features. Finally, for target classification, SVM is used as a baseline classifier. Experiments on MSTAR public release dataset are conducted, and the results demonstrate that the proposed method outperforms the state-of-the-art methods.
17#
發(fā)表于 2025-3-24 11:44:17 | 只看該作者
Automatic Foreground Seeds Discovery for Robust Video Saliency Detectionobal object appearance model using the initial seeds and remove unreliable seeds according to foreground likelihood. Finally, the seeds work as queries to rank all the superpixels in images to generate saliency maps. Experimental results on challenging public dataset demonstrate the advantage of our algorithm over state-of-the-art algorithms.
18#
發(fā)表于 2025-3-24 18:34:49 | 只看該作者
19#
發(fā)表于 2025-3-24 20:05:37 | 只看該作者
Object Discovery and Cosegmentation Based on Dense Correspondencessides, due to the powerful feature learning ability of deep models, we adopt VGG features to do unsupervised clustering and find representative candidates as a prior knowledge. Experiments on noisy datasets show the effectiveness of our method.
20#
發(fā)表于 2025-3-24 23:38:08 | 只看該作者
Fusing Appearance Features and Correlation Features for Face Video Retrievalnd hash learning into a unified optimization framework to guarantee optimal compatibility of appearance features and correlation features. Experiments on two challenging TV-Series datasets demonstrate the effectiveness of the proposed method.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
炉霍县| 大渡口区| 凭祥市| 洛阳市| 岳普湖县| 沐川县| 陇川县| 洛南县| 扎鲁特旗| 河北省| 衡东县| 兰西县| 瑞丽市| 井研县| 平安县| 渝北区| 彰化市| 滨州市| 平南县| 奇台县| 平谷区| 清苑县| 呼和浩特市| 正定县| 漳平市| 灵武市| 营口市| 新兴县| 白山市| 龙南县| 若尔盖县| 岑巩县| 栾城县| 石柱| 夏津县| 潼南县| 元阳县| 六盘水市| 山西省| 庐江县| 南乐县|