找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 27th Pacific-Asia Co Hisashi Kashima,Tsuyoshi Ide,Wen-Chih Peng Conference proceedings 202

[復制鏈接]
樓主: 雜技演員
51#
發(fā)表于 2025-3-30 08:14:53 | 只看該作者
Toward Explainable Recommendation via?Counterfactual Reasoningeness, most of these models neglect the fact that not all aspects are equally important when users decide to purchase different items. As a result, the explanations generated may not reflect the users’ actual preferences. Furthermore, these models typically rely on external tools to extract aspect-l
52#
發(fā)表于 2025-3-30 14:19:18 | 只看該作者
Online Volume Optimization for?Notifications via?Long Short-Term Value Modelingion about the app. However, determining the proper volume of notifications sent to each user is a key challenge for improving user experience, particularly for new users whose preferences on push notifications are unknown. In this paper, we address the problem of app notification volume optimization
53#
發(fā)表于 2025-3-30 18:15:16 | 只看該作者
Discovering Geo-referenced Frequent Patterns in?Uncertain Geo-referenced Transactional Databasesnomenon over time. Useful patterns that can empower the users to achieve socio-economic development lie hidden in this database. Finding these patterns is challenging as the existing frequent pattern mining studies ignore the spatial information of the items in a database. This paper proposes a gene
54#
發(fā)表于 2025-3-31 00:01:36 | 只看該作者
Joint Latent Topic Discovery and?Expectation Modeling for?Financial Marketse capturing interrelations between companies and their stocks. However, current relational stock methods are limited by their reliance on predefined stock relationships and the exclusive consideration of immediate effects. To address these limitations, we present a groundbreaking framework for finan
55#
發(fā)表于 2025-3-31 03:55:30 | 只看該作者
A Text2Text Generative Approach for?Financial Complaint Identificationancial loss, material inconvenience, and distress are sufficient examples to intensify the need for an automated complaint analysis tool in the financial domain, particularly on social media with diverse information-related affairs. Recently, advanced approaches like complaint detection with machine
56#
發(fā)表于 2025-3-31 05:04:25 | 只看該作者
57#
發(fā)表于 2025-3-31 12:21:37 | 只看該作者
58#
發(fā)表于 2025-3-31 14:31:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 05:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麻城市| 华蓥市| 图木舒克市| 宁陕县| 安西县| 桃园市| 华容县| 竹溪县| 高邮市| 永修县| 阿克苏市| 阿拉善盟| 祁阳县| 江山市| 旬邑县| 密山市| 澄江县| 南召县| 镇安县| 玉树县| 饶平县| 土默特右旗| 万山特区| 延津县| 花莲市| 鲁山县| 慈利县| 攀枝花市| 尚志市| 桃源县| 天峨县| 玉门市| 凤翔县| 洛浦县| 新宾| 延安市| 康乐县| 哈尔滨市| 祁阳县| 樟树市| 颍上县|