找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 27th Pacific-Asia Co Hisashi Kashima,Tsuyoshi Ide,Wen-Chih Peng Conference proceedings 202

[復(fù)制鏈接]
查看: 16022|回復(fù): 57
樓主
發(fā)表于 2025-3-21 16:57:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Advances in Knowledge Discovery and Data Mining
期刊簡稱27th Pacific-Asia Co
影響因子2023Hisashi Kashima,Tsuyoshi Ide,Wen-Chih Peng
視頻videohttp://file.papertrans.cn/149/148648/148648.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Advances in Knowledge Discovery and Data Mining; 27th Pacific-Asia Co Hisashi Kashima,Tsuyoshi Ide,Wen-Chih Peng Conference proceedings 202
影響因子The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the?27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25–28, 2023..The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with?new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations..
Pindex Conference proceedings 2023
The information of publication is updating

書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)




書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度




書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次




書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining年度引用




書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋




書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:50:50 | 只看該作者
Web-Scale Semantic Product Search with?Large Language Modelsh offline experiments on an e-commerce product dataset, we show that a distilled small BERT-based model (75M params) trained using our approach improves the search relevance metric by up to 23% over a baseline DSSM-based model with similar inference latency. The small model only suffers a 3% drop in
板凳
發(fā)表于 2025-3-22 02:11:40 | 只看該作者
Multi-task Learning Based Keywords Weighted Siamese Model for?Semantic Retrievalfrom queries and documents automatically. Furthermore, we propose a novel multi-task framework that jointly trains both the deep Siamese model and the keywords identification model to help improve each other’s performance. We also conduct comprehensive experiments on both online A/B tests and two fa
地板
發(fā)表于 2025-3-22 08:38:41 | 只看該作者
5#
發(fā)表于 2025-3-22 12:15:57 | 只看該作者
MFBE: Leveraging Multi-field Information of?FAQs for?Efficient Dense Retrievalulting from multiple FAQ fields and performs well even with minimal labeled data. We empirically support this claim through experiments on proprietary as well as open-source public datasets in both unsupervised and supervised settings. Our model achieves around 27% and 23% better top-1 accuracy for
6#
發(fā)表于 2025-3-22 14:02:37 | 只看該作者
Isotropic Representation Can Improve Dense Retrieval we investigate out-of-distribution tasks where the test dataset differs from the training dataset. The results show that isotropic representation can certainly achieve a generally improved performance (The code is available at .).
7#
發(fā)表于 2025-3-22 20:50:54 | 只看該作者
Knowledge-Enhanced Prototypical Network with?Structural Semantics for?Few-Shot Relation Classificatinstruct the negative samples with various difficulties (i.e. hard, medium, and easy) based on the conceptual hierarchical structure. Experimental results on the FewRel?2.0 benchmark show that SKProto outperforms state-of-the-art models. We also demonstrate that SKProto has better robustness than oth
8#
發(fā)表于 2025-3-22 22:58:59 | 只看該作者
MIDFA: Memory-Based Instance Division and?Feature Aggregation Network for?Video Object Detection problem (c). These three parts constitute the MIDFA network. Experiments show that our method achieves 83.76% mAP on the ImageNet VID dataset based on ResNet-101, and 84.6% mAP on ResNeXt-101. In addition, we also conduct experiments on a custom-designed multi-class VID dataset, and adding Instance
9#
發(fā)表于 2025-3-23 02:30:06 | 只看該作者
Vision Transformers for?Small Histological Datasets Learned Through Knowledge Distillation. Our best-performing ViT yields 0.961 and 0.911 F1-score and MCC, respectively, observing a 7% gain in MCC against stand-alone training. The proposed method presents a new perspective of leveraging knowledge distillation over transfer learning to encourage the use of customized transformers for eff
10#
發(fā)表于 2025-3-23 07:37:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高密市| 平潭县| 辽宁省| 修文县| 长岭县| 漾濞| 宿松县| 桃园县| 游戏| 牡丹江市| 友谊县| 喀喇沁旗| 承德市| 南宫市| 奎屯市| 雷州市| 砀山县| 平遥县| 西畴县| 余江县| 屏东市| 德兴市| 松桃| 舞阳县| 环江| 溧水县| 名山县| 桦甸市| 延津县| 和静县| 西乌珠穆沁旗| 九龙城区| 郓城县| 金阳县| 乌苏市| 梁平县| 榆林市| 和政县| 昔阳县| 廊坊市| 施甸县|