找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Knowledge Discovery and Data Mining; 27th Pacific-Asia Co Hisashi Kashima,Tsuyoshi Ide,Wen-Chih Peng Conference proceedings 202

[復(fù)制鏈接]
樓主: 雜技演員
51#
發(fā)表于 2025-3-30 08:14:53 | 只看該作者
Toward Explainable Recommendation via?Counterfactual Reasoningeness, most of these models neglect the fact that not all aspects are equally important when users decide to purchase different items. As a result, the explanations generated may not reflect the users’ actual preferences. Furthermore, these models typically rely on external tools to extract aspect-l
52#
發(fā)表于 2025-3-30 14:19:18 | 只看該作者
Online Volume Optimization for?Notifications via?Long Short-Term Value Modelingion about the app. However, determining the proper volume of notifications sent to each user is a key challenge for improving user experience, particularly for new users whose preferences on push notifications are unknown. In this paper, we address the problem of app notification volume optimization
53#
發(fā)表于 2025-3-30 18:15:16 | 只看該作者
Discovering Geo-referenced Frequent Patterns in?Uncertain Geo-referenced Transactional Databasesnomenon over time. Useful patterns that can empower the users to achieve socio-economic development lie hidden in this database. Finding these patterns is challenging as the existing frequent pattern mining studies ignore the spatial information of the items in a database. This paper proposes a gene
54#
發(fā)表于 2025-3-31 00:01:36 | 只看該作者
Joint Latent Topic Discovery and?Expectation Modeling for?Financial Marketse capturing interrelations between companies and their stocks. However, current relational stock methods are limited by their reliance on predefined stock relationships and the exclusive consideration of immediate effects. To address these limitations, we present a groundbreaking framework for finan
55#
發(fā)表于 2025-3-31 03:55:30 | 只看該作者
A Text2Text Generative Approach for?Financial Complaint Identificationancial loss, material inconvenience, and distress are sufficient examples to intensify the need for an automated complaint analysis tool in the financial domain, particularly on social media with diverse information-related affairs. Recently, advanced approaches like complaint detection with machine
56#
發(fā)表于 2025-3-31 05:04:25 | 只看該作者
57#
發(fā)表于 2025-3-31 12:21:37 | 只看該作者
58#
發(fā)表于 2025-3-31 14:31:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆中县| 苏尼特右旗| 海门市| 泾阳县| 南京市| 太和县| 乌兰浩特市| 津市市| 东阿县| 吉林市| 马边| 叙永县| 云和县| 宜兰市| 来宾市| 濉溪县| 湾仔区| 峡江县| 和政县| 开封市| 深泽县| 平和县| 子长县| 泰兴市| 渝北区| 迁安市| 临邑县| 邮箱| 洞头县| 慈利县| 色达县| 鄂温| 依安县| 黄梅县| 西乌| 潞城市| 东乡县| 盐边县| 那曲县| 环江| 乌兰浩特市|