找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Boundary Element Methods; Proceedings of the I Thomas A. Cruse Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 198

[復制鏈接]
樓主: 叛亂分子
41#
發(fā)表于 2025-3-28 16:49:02 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0aviour of the component at each step of the algorithm. This method prooved to be very efficient and in now applied to three dimensional structures using the Boundary Element method as analysis tool. The principle of the shape optimization method is to repeatedly modify the shape of the structure acc
42#
發(fā)表于 2025-3-28 19:56:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:11:51 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0s -- we present a combined approach with finite elements and boundary elements. The given method is based on a general variational principle which renders all boundary conditions on the interface manifold Γ to be natural and also allows inhomogeneous material for the scatterer given here by a bounde
44#
發(fā)表于 2025-3-29 03:52:25 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:41 | 只看該作者
Kenji Nanba,Alexei Konoplev,Toshihiro Wadar kernels encountered in a collocation procedure and secondly, the interpolation of the unknown functions over the element surface and the interpolation of the element surface itself..For kernel integration, some results are presented which combine the method of singularity subtraction and Taylor ex
46#
發(fā)表于 2025-3-29 14:55:11 | 只看該作者
Kenji Nanba,Shota Moritaka,Yasunori Igarashior convergence computation of a classic 3D shell problem (a ring with circular cross-section under concentrated loading) solved by using BEM is presented. Some numerical analysis experience in 30 BEM with isoparametric element has also been summarized in this paper. By way of a great number of numer
47#
發(fā)表于 2025-3-29 15:51:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:55:52 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:11 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
仪征市| 乐业县| 枣强县| 云林县| 乌兰浩特市| 惠安县| 阜南县| 同德县| 始兴县| 巩留县| 平潭县| 尼玛县| 永丰县| 曲水县| 贡嘎县| 东光县| 金乡县| 石棉县| 靖州| 天峻县| 兰州市| 哈尔滨市| 安乡县| 怀安县| 莱芜市| 克东县| 凉城县| 崇仁县| 龙江县| 哈巴河县| 宁夏| 阿克苏市| 汉源县| 五常市| 青川县| 华安县| 阿坝县| 玉山县| 丹棱县| 阜新| 开封市|