找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advanced Boundary Element Methods; Proceedings of the I Thomas A. Cruse Conference proceedings 1988 Springer-Verlag, Berlin, Heidelberg 198

[復制鏈接]
樓主: 叛亂分子
41#
發(fā)表于 2025-3-28 16:49:02 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0aviour of the component at each step of the algorithm. This method prooved to be very efficient and in now applied to three dimensional structures using the Boundary Element method as analysis tool. The principle of the shape optimization method is to repeatedly modify the shape of the structure acc
42#
發(fā)表于 2025-3-28 19:56:31 | 只看該作者
43#
發(fā)表于 2025-3-28 23:11:51 | 只看該作者
https://doi.org/10.1007/978-981-15-3568-0s -- we present a combined approach with finite elements and boundary elements. The given method is based on a general variational principle which renders all boundary conditions on the interface manifold Γ to be natural and also allows inhomogeneous material for the scatterer given here by a bounde
44#
發(fā)表于 2025-3-29 03:52:25 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:41 | 只看該作者
Kenji Nanba,Alexei Konoplev,Toshihiro Wadar kernels encountered in a collocation procedure and secondly, the interpolation of the unknown functions over the element surface and the interpolation of the element surface itself..For kernel integration, some results are presented which combine the method of singularity subtraction and Taylor ex
46#
發(fā)表于 2025-3-29 14:55:11 | 只看該作者
Kenji Nanba,Shota Moritaka,Yasunori Igarashior convergence computation of a classic 3D shell problem (a ring with circular cross-section under concentrated loading) solved by using BEM is presented. Some numerical analysis experience in 30 BEM with isoparametric element has also been summarized in this paper. By way of a great number of numer
47#
發(fā)表于 2025-3-29 15:51:17 | 只看該作者
48#
發(fā)表于 2025-3-29 21:55:52 | 只看該作者
49#
發(fā)表于 2025-3-30 00:58:11 | 只看該作者
50#
發(fā)表于 2025-3-30 05:37:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
昌图县| 故城县| 平塘县| 大洼县| 镇宁| 庄浪县| 大埔县| 大同市| 元江| 潜江市| 郧西县| 日照市| 晋城| 大姚县| 华安县| 全南县| 平凉市| 东乡县| 巴马| 莲花县| 固原市| 泰和县| 北碚区| 沽源县| 防城港市| 灵石县| 蓬莱市| 洛南县| 锦州市| 东明县| 凤庆县| 黔南| 惠水县| 宁安市| 英山县| 应城市| 汝城县| 彭山县| 昂仁县| 松桃| 泸定县|