找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Accelerated Optimization for Machine Learning; First-Order Algorith Zhouchen Lin,Huan Li,Cong Fang Book 2020 Springer Nature Singapore Pte

[復制鏈接]
查看: 22705|回復: 40
樓主
發(fā)表于 2025-3-21 17:05:55 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Accelerated Optimization for Machine Learning
期刊簡稱First-Order Algorith
影響因子2023Zhouchen Lin,Huan Li,Cong Fang
視頻videohttp://file.papertrans.cn/144/143623/143623.mp4
發(fā)行地址The first monograph on accelerated first-order optimization algorithms used in machine learning.Includes forewords by Michael I. Jordan, Zongben Xu, and Zhi-Quan Luo, and written by experts on machine
圖書封面Titlebook: Accelerated Optimization for Machine Learning; First-Order Algorith Zhouchen Lin,Huan Li,Cong Fang Book 2020 Springer Nature Singapore Pte
影響因子.This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning...Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the?algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time..
Pindex Book 2020
The information of publication is updating

書目名稱Accelerated Optimization for Machine Learning影響因子(影響力)




書目名稱Accelerated Optimization for Machine Learning影響因子(影響力)學科排名




書目名稱Accelerated Optimization for Machine Learning網(wǎng)絡公開度




書目名稱Accelerated Optimization for Machine Learning網(wǎng)絡公開度學科排名




書目名稱Accelerated Optimization for Machine Learning被引頻次




書目名稱Accelerated Optimization for Machine Learning被引頻次學科排名




書目名稱Accelerated Optimization for Machine Learning年度引用




書目名稱Accelerated Optimization for Machine Learning年度引用學科排名




書目名稱Accelerated Optimization for Machine Learning讀者反饋




書目名稱Accelerated Optimization for Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:59 | 只看該作者
Are the Results Robust and Still Valid?, when the high order derivative is Lipschitz continuous. This chapter also provides the smoothing technique for nonsmooth problems, the restart technique for non-strongly convex problems and the explanation of the mechanism of acceleration from the variational perspective.
板凳
發(fā)表于 2025-3-22 00:25:24 | 只看該作者
地板
發(fā)表于 2025-3-22 06:11:07 | 只看該作者
Alessandro Carretta,Gianluca Mattarocciction and Catalyst. For the nonconvex problems, we introduce a method named SPIDER. For the constrained problems, we introduce the accelerated stochastic ADMM. For the infinite case, we show that the momentum technique can enlarge the mini-batch size.
5#
發(fā)表于 2025-3-22 09:47:49 | 只看該作者
6#
發(fā)表于 2025-3-22 14:11:12 | 只看該作者
gben Xu, and Zhi-Quan Luo, and written by experts on machine.This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mai
7#
發(fā)表于 2025-3-22 18:20:27 | 只看該作者
Gianni Nicolini,Ekaterina Dorodnykhhe centralized topology and decentralized topology. For both topologies, we introduce the communication-efficient accelerated stochastic dual coordinate ascent. Specially, we concentrate on the stochastic variant, where at each iteration only parts of samples are used in each agent.
8#
發(fā)表于 2025-3-22 21:29:05 | 只看該作者
9#
發(fā)表于 2025-3-23 02:58:37 | 只看該作者
Accelerated Algorithms for Unconstrained Convex Optimization,des II. Bandes aufgestellten S?tze unmittelbar anzuwenden, weil es sich hier ja um starre K?rper handelt. Die so erhaltenen Differentialgleichungen in Verbindung mit den Bedingungsgleichungen der Bewegungen der Verbindung bestimmen sowohl die Koordinaten als Funktionen der Zeit, als auch die inneren
10#
發(fā)表于 2025-3-23 08:01:00 | 只看該作者
book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time..978-981-15-2912-2978-981-15-2910-8
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
子洲县| 珠海市| 邵阳市| 天等县| 隆化县| 巴南区| 浮梁县| 永仁县| 潼南县| 巴中市| 祁阳县| 抚松县| 永平县| 嵊州市| 张家川| 什邡市| 桦川县| 来宾市| 海南省| 平果县| 米林县| 翁源县| 库车县| 永嘉县| 德清县| 通州市| 赞皇县| 平舆县| 新竹市| 溆浦县| 绿春县| 娄烦县| 苍溪县| 留坝县| 女性| 徐闻县| 璧山县| 岗巴县| 安庆市| 富平县| 通州市|