找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: AI 2021: Advances in Artificial Intelligence; 34th Australasian Jo Guodong Long,Xinghuo Yu,Sen Wang Conference proceedings 2022 Springer Na

[復(fù)制鏈接]
查看: 35981|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:35:38 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱AI 2021: Advances in Artificial Intelligence
期刊簡稱34th Australasian Jo
影響因子2023Guodong Long,Xinghuo Yu,Sen Wang
視頻videohttp://file.papertrans.cn/143/142766/142766.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: AI 2021: Advances in Artificial Intelligence; 34th Australasian Jo Guodong Long,Xinghuo Yu,Sen Wang Conference proceedings 2022 Springer Na
影響因子.This book constitutes the proceedings of the 34th Australasian Joint Conference on Artificial Intelligence, AI 2021, held in Sydney, NSW, Australia, in February 2022.*..The 64 full papers presented in this volume were carefully reviewed and selected from 120 submissions. The papers were organized in topical sections named: Ethical AI, Applications, Classical AI, Computer Vision and Machine Learning, Natural Language Processing and Data Mining, and Network Analysis...*The conference was postponed from December 2021 to February 2022 and held virtually due to the COVID-19 pandemic..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱AI 2021: Advances in Artificial Intelligence影響因子(影響力)




書目名稱AI 2021: Advances in Artificial Intelligence影響因子(影響力)學(xué)科排名




書目名稱AI 2021: Advances in Artificial Intelligence網(wǎng)絡(luò)公開度




書目名稱AI 2021: Advances in Artificial Intelligence網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱AI 2021: Advances in Artificial Intelligence被引頻次




書目名稱AI 2021: Advances in Artificial Intelligence被引頻次學(xué)科排名




書目名稱AI 2021: Advances in Artificial Intelligence年度引用




書目名稱AI 2021: Advances in Artificial Intelligence年度引用學(xué)科排名




書目名稱AI 2021: Advances in Artificial Intelligence讀者反饋




書目名稱AI 2021: Advances in Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:39 | 只看該作者
Kittiphop Phalakarn,Toru Nakamuras have been focusing on. Many applications have used reinforcement learning, such as robotics, recommendation systems, and healthcare systems. These systems could collect data about the environment or users, which may contain sensitive information that posed a real risk when these data were disclose
板凳
發(fā)表于 2025-3-22 03:05:53 | 只看該作者
Xavier Carpent,Seoyeon Hwang,Gene Tsudikth and autonomous vehicles. It is important to understand why particular predictions are made by a sub-symbolic machine learning (ML) model, because humans use these predictions in their decision making process. In this paper, we introduce HESIP, a hybrid system that combines symbolic and sub-symbol
地板
發(fā)表于 2025-3-22 07:16:36 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:33 | 只看該作者
How Not to Create an Isogeny-Based PAKEted in AI systems through a combination of Knowledge Representation,?Monte Carlo Tree Search and Deep Reinforcement Learning: Generalised AlphaZero?[.] provides a method for building general game-playing agents that can learn any game describable in a formal specification language. We investigate ho
6#
發(fā)表于 2025-3-22 15:45:04 | 只看該作者
Classical Misuse Attacks on NIST Round 2 PQCeconstructing training data of a target model. However, the performances of current works are highly rely on auxiliary datasets. In this paper, we investigate the model inversion problem under a strict restriction, where the adversary aims to reconstruct plausible samples of the target class without
7#
發(fā)表于 2025-3-22 19:04:23 | 只看該作者
Liliya Kraleva,Tomer Ashur,Vincent Rijmencated. Computing Shapley Values are one of the best approaches so far to find the importance of each feature in a model, at the instance (data point) level. In other words, Shapley values represent the importance of a feature for a particular instance or observation, especially for classification or
8#
發(fā)表于 2025-3-22 23:11:56 | 只看該作者
Lo?s Huguenin-Dumittan,Serge Vaudenayive benefits of such systems, there is potential for exploitation by invading user privacy. In this work, we analyse the privacy invasiveness of face biometric systems by predicting privacy-sensitive soft-biometrics using masked face images. We train and apply a CNN based on the ResNet-50 architectu
9#
發(fā)表于 2025-3-23 03:23:56 | 只看該作者
10#
發(fā)表于 2025-3-23 05:58:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松滋市| 饶阳县| 阳信县| 江山市| 武冈市| 夹江县| 嫩江县| 中山市| 罗山县| 海盐县| 杨浦区| 盘锦市| 无极县| 乌兰察布市| 乐业县| 威海市| 焉耆| 万年县| 广水市| 沁源县| 鄯善县| 合阳县| 湖南省| 广平县| 仙桃市| 陕西省| 佳木斯市| 东乡| 高青县| 兖州市| 读书| 吴江市| 临高县| 阿图什市| 白朗县| 安国市| 丰城市| 丰顺县| 册亨县| 富川| 嘉义县|