找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: AI 2021: Advances in Artificial Intelligence; 34th Australasian Jo Guodong Long,Xinghuo Yu,Sen Wang Conference proceedings 2022 Springer Na

[復(fù)制鏈接]
查看: 35991|回復(fù): 58
樓主
發(fā)表于 2025-3-21 19:35:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)AI 2021: Advances in Artificial Intelligence
期刊簡(jiǎn)稱(chēng)34th Australasian Jo
影響因子2023Guodong Long,Xinghuo Yu,Sen Wang
視頻videohttp://file.papertrans.cn/143/142766/142766.mp4
學(xué)科分類(lèi)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: AI 2021: Advances in Artificial Intelligence; 34th Australasian Jo Guodong Long,Xinghuo Yu,Sen Wang Conference proceedings 2022 Springer Na
影響因子.This book constitutes the proceedings of the 34th Australasian Joint Conference on Artificial Intelligence, AI 2021, held in Sydney, NSW, Australia, in February 2022.*..The 64 full papers presented in this volume were carefully reviewed and selected from 120 submissions. The papers were organized in topical sections named: Ethical AI, Applications, Classical AI, Computer Vision and Machine Learning, Natural Language Processing and Data Mining, and Network Analysis...*The conference was postponed from December 2021 to February 2022 and held virtually due to the COVID-19 pandemic..
Pindex Conference proceedings 2022
The information of publication is updating

書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence影響因子(影響力)




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence被引頻次




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence被引頻次學(xué)科排名




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence年度引用




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence年度引用學(xué)科排名




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence讀者反饋




書(shū)目名稱(chēng)AI 2021: Advances in Artificial Intelligence讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:25:39 | 只看該作者
Kittiphop Phalakarn,Toru Nakamuras have been focusing on. Many applications have used reinforcement learning, such as robotics, recommendation systems, and healthcare systems. These systems could collect data about the environment or users, which may contain sensitive information that posed a real risk when these data were disclose
板凳
發(fā)表于 2025-3-22 03:05:53 | 只看該作者
Xavier Carpent,Seoyeon Hwang,Gene Tsudikth and autonomous vehicles. It is important to understand why particular predictions are made by a sub-symbolic machine learning (ML) model, because humans use these predictions in their decision making process. In this paper, we introduce HESIP, a hybrid system that combines symbolic and sub-symbol
地板
發(fā)表于 2025-3-22 07:16:36 | 只看該作者
5#
發(fā)表于 2025-3-22 08:54:33 | 只看該作者
How Not to Create an Isogeny-Based PAKEted in AI systems through a combination of Knowledge Representation,?Monte Carlo Tree Search and Deep Reinforcement Learning: Generalised AlphaZero?[.] provides a method for building general game-playing agents that can learn any game describable in a formal specification language. We investigate ho
6#
發(fā)表于 2025-3-22 15:45:04 | 只看該作者
Classical Misuse Attacks on NIST Round 2 PQCeconstructing training data of a target model. However, the performances of current works are highly rely on auxiliary datasets. In this paper, we investigate the model inversion problem under a strict restriction, where the adversary aims to reconstruct plausible samples of the target class without
7#
發(fā)表于 2025-3-22 19:04:23 | 只看該作者
Liliya Kraleva,Tomer Ashur,Vincent Rijmencated. Computing Shapley Values are one of the best approaches so far to find the importance of each feature in a model, at the instance (data point) level. In other words, Shapley values represent the importance of a feature for a particular instance or observation, especially for classification or
8#
發(fā)表于 2025-3-22 23:11:56 | 只看該作者
Lo?s Huguenin-Dumittan,Serge Vaudenayive benefits of such systems, there is potential for exploitation by invading user privacy. In this work, we analyse the privacy invasiveness of face biometric systems by predicting privacy-sensitive soft-biometrics using masked face images. We train and apply a CNN based on the ResNet-50 architectu
9#
發(fā)表于 2025-3-23 03:23:56 | 只看該作者
10#
發(fā)表于 2025-3-23 05:58:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永泰县| 巴楚县| 司法| 宜阳县| 内江市| 晋州市| 兰州市| 琼海市| 久治县| 延庆县| 平阴县| 宝丰县| 晋中市| 达州市| 瑞金市| 元氏县| 个旧市| 高台县| 伊川县| 射阳县| 东港市| 涞源县| 张掖市| 分宜县| 河西区| 哈尔滨市| 洛浦县| 贵溪市| 澄迈县| 台北市| 克拉玛依市| 崇左市| 北宁市| 常山县| 怀化市| 盐边县| 开远市| 皋兰县| 芦山县| 兴山县| 益阳市|