找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds; Yohann Le Floch Textbook 2018 Springer Nature Switzerland

[復制鏈接]
查看: 13737|回復: 44
樓主
發(fā)表于 2025-3-21 16:46:20 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds
影響因子2023Yohann Le Floch
視頻videohttp://file.papertrans.cn/141/140106/140106.mp4
發(fā)行地址Presents the first introduction to the subject for non-specialists.Requires only a basic knowledge of differential geometry and analysis.First chapters review the necessary geometric notions to study
學科分類CRM Short Courses
圖書封面Titlebook: A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds;  Yohann Le Floch Textbook 2018 Springer Nature Switzerland
影響因子.This text provides a comprehensive introduction to Berezin–Toeplitz operators on compact K?hler manifolds. The heart of the book is devoted to a proof of the main properties of these operators which have been playing a significant role in various areas of mathematics such as complex geometry, topological quantum field theory, integrable systems, and the study of links between symplectic topology and quantum mechanics. The book is carefully designed to supply graduate students with a unique accessibility to the subject. The first part contains a review of relevant material from complex geometry. Examples are presented with explicit detail and computation; prerequisites have been kept to a minimum. Readers are encouraged to enhance their understanding of the material by working through the many straightforward exercises. .
Pindex Textbook 2018
The information of publication is updating

書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds影響因子(影響力)




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds影響因子(影響力)學科排名




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds網(wǎng)絡(luò)公開度




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds網(wǎng)絡(luò)公開度學科排名




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds被引頻次




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds被引頻次學科排名




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds年度引用




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds年度引用學科排名




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds讀者反饋




書目名稱A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:14:49 | 只看該作者
Textbook 2018y. Examples are presented with explicit detail and computation; prerequisites have been kept to a minimum. Readers are encouraged to enhance their understanding of the material by working through the many straightforward exercises. .
地板
發(fā)表于 2025-3-22 07:21:00 | 只看該作者
Textbook 2018f of the main properties of these operators which have been playing a significant role in various areas of mathematics such as complex geometry, topological quantum field theory, integrable systems, and the study of links between symplectic topology and quantum mechanics. The book is carefully desig
5#
發(fā)表于 2025-3-22 11:43:35 | 只看該作者
6#
發(fā)表于 2025-3-22 13:18:25 | 只看該作者
A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds
7#
發(fā)表于 2025-3-22 20:11:15 | 只看該作者
8#
發(fā)表于 2025-3-22 21:20:34 | 只看該作者
9#
發(fā)表于 2025-3-23 04:51:03 | 只看該作者
10#
發(fā)表于 2025-3-23 06:39:49 | 只看該作者
Back Matter das allgemein übliche Rechensystem. Dieses Rechenbüchlein steckt übrigens voller kaufm?nnischer Beispiele. Ob ohne die Erfindung dieses oder eines ?hnlichen Ziffernsystems die moderne technische, wirtschaftliche und wissenschaftliche Entwicklung m?glich gewesen w?re, ist sehr zweifelhaft.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
广元市| 广昌县| 通榆县| 陆丰市| 霍城县| 海门市| 大丰市| 岳阳市| 沁阳市| 锦州市| 达拉特旗| 白城市| 南华县| 宁海县| 通州市| 辉县市| 克什克腾旗| 台湾省| 宿松县| 军事| 龙山县| 冀州市| 甘孜县| 宁晋县| 封开县| 临夏市| 普陀区| 炎陵县| 万山特区| 临海市| 平果县| 浦东新区| 原平市| 通山县| 石渠县| 新野县| 孟津县| 印江| 玉龙| 景泰县| 高雄市|