找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds; Yohann Le Floch Textbook 2018 Springer Nature Switzerland

[復制鏈接]
樓主: 公款
11#
發(fā)表于 2025-3-23 13:31:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:26 | 只看該作者
13#
發(fā)表于 2025-3-23 19:06:51 | 只看該作者
https://doi.org/10.1007/978-3-319-94682-5Kahler manifolds; complexified tangent bundle; complex line bundles; quantization compact Kahler manifo
14#
發(fā)表于 2025-3-23 23:16:42 | 只看該作者
978-3-030-06898-1Springer Nature Switzerland AG 2018
15#
發(fā)表于 2025-3-24 05:34:06 | 只看該作者
A Brief Introduction to Berezin–Toeplitz Operators on Compact K?hler Manifolds978-3-319-94682-5Series ISSN 2522-5200 Series E-ISSN 2522-5219
16#
發(fā)表于 2025-3-24 09:19:38 | 只看該作者
Advances in Orthopedic Surgery of the Knees. Let .be the completion of the space of smooth sections of . with respect to the inner product . introduced earlier, and let .be the orthogonal projector from . to .. This projector is often called the ..
17#
發(fā)表于 2025-3-24 12:58:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:12 | 只看該作者
19#
發(fā)表于 2025-3-24 19:23:57 | 只看該作者
Masatomo So,Yuichi Yoshimura,Yuji GotoIn this chapter, we recall some general facts about complex and K?hler manifolds. It is not an exhaustive list of such facts, but rather an introduction of objects and properties that we will need in the rest of the notes. The interested reader might want to take a look at some standard textbooks, such as?[24, 35] for instance.
20#
發(fā)表于 2025-3-24 23:59:14 | 只看該作者
Masatomo So,Yuichi Yoshimura,Yuji GotoLet us now recall some facts about complex line bundles. A certain number of definitions and properties could be stated for general vector bundles, but we prefer to focus on the one-dimensional case, since this is the case that will be encountered in the following sections.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
宁强县| 清镇市| 浏阳市| 和林格尔县| 涪陵区| 裕民县| 青阳县| 普洱| 获嘉县| 新龙县| 枞阳县| 南皮县| 平乡县| 藁城市| 仁布县| 大埔县| 筠连县| 吉林省| 通城县| 沙坪坝区| 肇庆市| 蕲春县| 新巴尔虎右旗| 乐都县| 开江县| 大石桥市| 五寨县| 札达县| 宁河县| 得荣县| 杂多县| 山阴县| 崇阳县| 大竹县| 峨眉山市| 富顺县| 德格县| 保靖县| 安宁市| 宁明县| 息烽县|