找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Why Prove it Again?; Alternative Proofs i John W. Dawson, Jr. Book 2015 Springer International Publishing Switzerland 2015 Alternative Proo

[復制鏈接]
樓主: HEMI
21#
發(fā)表于 2025-3-25 03:47:14 | 只看該作者
22#
發(fā)表于 2025-3-25 08:51:31 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:29 | 只看該作者
The Fundamental Theorem of Arithmetic, the factors. The theorem is often credited to Euclid, but was apparently first stated in that generality by Gauss. Note that the statement has two parts: First, every integer greater than 1 . a factorization into primes; second, any two factorizations of an integer greater than 1 into primes must b
24#
發(fā)表于 2025-3-25 18:39:55 | 只看該作者
25#
發(fā)表于 2025-3-25 22:56:15 | 只看該作者
The Fundamental Theorem of Algebra,ce. Like the Pythagorean Theorem, the Fundamental Theorem of Algebra has been proved in many different ways since its enunciation by Euler in 1739. Unlike the Pythagorean Theorem, however, early attempts to prove the Fundamental Theorem of Algebra are not shrouded in the mists of antiquity, so we kn
26#
發(fā)表于 2025-3-26 00:36:33 | 只看該作者
27#
發(fā)表于 2025-3-26 08:11:43 | 只看該作者
28#
發(fā)表于 2025-3-26 10:10:36 | 只看該作者
Other Case Studies,avor and that the informal criteria for distinguishing proofs described in Chapter?. serve that purpose well. I hope too that some of the proofs discussed in those chapters will have been new to most readers, who will have found them to possess both intrinsic interest and pedagogical value.This fina
29#
發(fā)表于 2025-3-26 15:20:09 | 只看該作者
30#
發(fā)表于 2025-3-26 19:45:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西乌珠穆沁旗| 通化县| 鄱阳县| 通海县| 宝应县| 九台市| 平阳县| 施秉县| 六盘水市| 叶城县| 方山县| 东光县| 伊川县| 灵石县| 祁阳县| 建昌县| 鲜城| 县级市| 河南省| 湟中县| 德保县| 巨鹿县| 横峰县| 甘洛县| 洞头县| 湖北省| 花莲县| 漯河市| 渭源县| 莲花县| 潼关县| 孝义市| 阜阳市| 贵阳市| 彩票| 丰原市| 大关县| 边坝县| 新乐市| 盐山县| 濮阳县|