找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Why Prove it Again?; Alternative Proofs i John W. Dawson, Jr. Book 2015 Springer International Publishing Switzerland 2015 Alternative Proo

[復(fù)制鏈接]
樓主: HEMI
31#
發(fā)表于 2025-3-26 22:48:00 | 只看該作者
The Fundamental Theorem of Algebra,ed to alternative proof strategies, and we can analyze why the proof given by Gauss in his 1799 inaugural dissertation was the first to be accorded general acceptance, though it too would later be deemed not fully rigorous.
32#
發(fā)表于 2025-3-27 01:07:09 | 只看該作者
as opposed to the formal notion of proof in mathematical log.This monograph considers several well-known mathematical theorems and asks the question, “Why prove it again?” while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new
33#
發(fā)表于 2025-3-27 08:48:26 | 只看該作者
The Pythagorean Theorem,known formulation concerning arbitrary ‘figures’ described on the sides of a right triangle. The first of those demonstrations is based on a comparison of areas and the second on similarity theory, a basic distinction that can be used as a first step in classifying many other proofs of the theorem as well.
34#
發(fā)表于 2025-3-27 12:19:50 | 只看該作者
The Fundamental Theorem of Arithmetic,rts: First, every integer greater than 1 . a factorization into primes; second, any two factorizations of an integer greater than 1 into primes must be identical except for the order of the factors. The proofs of each of those parts will thus be considered separately.
35#
發(fā)表于 2025-3-27 16:28:55 | 只看該作者
The Infinitude of the Primes,rces, including many by eminent number theorists, that either erroneously describe the structure of Euclid’s proof or make false historical claims about it. It is wise, therefore, to begin by quoting Euclid’s argument directly, as it is given in Heath’s translation (Heath?., vol.?II, p.?412).
36#
發(fā)表于 2025-3-27 19:59:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:04:47 | 只看該作者
38#
發(fā)表于 2025-3-28 02:46:24 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:32 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
历史| 武隆县| 盐亭县| 闸北区| 鹤峰县| 柘荣县| 冕宁县| 库尔勒市| 邹平县| 浙江省| 台南县| 醴陵市| 迁安市| 许昌县| 定兴县| 巨野县| 东安县| 双柏县| 迁西县| 绍兴县| 汉川市| 谢通门县| 望江县| 确山县| 赤水市| 铜川市| 玉树县| 印江| 疏勒县| 高台县| 永寿县| 广水市| 兰西县| 瓦房店市| 临沭县| 洞头县| 鲜城| 米林县| 铜鼓县| 葫芦岛市| 会泽县|