找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Well-Quasi Orders in Computation, Logic, Language and Reasoning; A Unifying Concept o Peter M. Schuster,Monika Seisenberger,Andreas Weie Bo

[復(fù)制鏈接]
樓主: GUAFF
11#
發(fā)表于 2025-3-23 13:27:36 | 只看該作者
12#
發(fā)表于 2025-3-23 17:52:17 | 只看該作者
Book 2020highly active branch of combinatorics is deeply rooted in and between many fields of mathematics and logic, including proof theory, commutative algebra, braid groups, graph theory, analytic combinatorics, theory of relations, reverse mathematics and subrecursive hierarchies. As a unifying concept fo
13#
發(fā)表于 2025-3-23 21:48:11 | 只看該作者
Well Quasi-orderings and Roots of Polynomials in a Hahn Field, a polynomial, in terms of the lengths of the coefficients [., .]. In the present paper, we give an introduction to Hahn fields, we indicate how well quasi-orderings arise when we try to bound the lengths of sums and products, and we re-work, in a more general way, a technical theorem from [.] that gives information on the root-taking process.
14#
發(fā)表于 2025-3-24 02:06:08 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:26 | 只看該作者
Well Quasi-orders and the Functional Interpretation,der problems which are related to this, particularly the question of the constructive meaning of Zorn’s lemma and the notion of recursion over the non-wellfounded lexicographic ordering on infinite sequences.
16#
發(fā)表于 2025-3-24 06:31:57 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:29 | 只看該作者
18#
發(fā)表于 2025-3-24 15:26:08 | 只看該作者
,Well-Partial Orderings and?their?Maximal Order Types,-product and an application of de Jongh and Parikh’s work, we give new and easier proofs of Higman’s, Kruskal’s and Nash–Williams’ theorems that the partial orderings considered are indeed w.p.o.’s. We also apply our results to the theory of ordinal notations.
19#
發(fā)表于 2025-3-24 21:47:07 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 00:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕉岭县| 全州县| 濮阳县| 碌曲县| 康平县| 乐安县| 韩城市| 江华| 安多县| 道孚县| 福安市| 菏泽市| 偃师市| 双辽市| 麟游县| 清镇市| 吉安市| 福安市| 天气| 察隅县| 梓潼县| 临沧市| 新密市| 肃南| 云龙县| 新化县| 佛冈县| 陆良县| 建德市| 凉城县| 宽甸| 社旗县| 武川县| 岑巩县| 大兴区| 苍山县| 东辽县| 都昌县| 西安市| 清原| 定州市|