找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Well-Quasi Orders in Computation, Logic, Language and Reasoning; A Unifying Concept o Peter M. Schuster,Monika Seisenberger,Andreas Weie Bo

[復制鏈接]
查看: 6810|回復: 50
樓主
發(fā)表于 2025-3-21 19:32:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning
副標題A Unifying Concept o
編輯Peter M. Schuster,Monika Seisenberger,Andreas Weie
視頻videohttp://file.papertrans.cn/1027/1026904/1026904.mp4
概述Introduces readers to a highly active branch of combinatorics.Unifies interdisciplinary areas between logic, mathematics and computer science.Highlights relevant work by top scholars from various fiel
叢書名稱Trends in Logic
圖書封面Titlebook: Well-Quasi Orders in Computation, Logic, Language and Reasoning; A Unifying Concept o Peter M. Schuster,Monika Seisenberger,Andreas Weie Bo
描述.This book bridges the gaps between logic, mathematics and computer science by delving into the theory of well-quasi orders, also known as wqos. This highly active branch of combinatorics is deeply rooted in and between many fields of mathematics and logic, including proof theory, commutative algebra, braid groups, graph theory, analytic combinatorics, theory of relations, reverse mathematics and subrecursive hierarchies. As a unifying concept for slick finiteness or termination proofs, wqos have been rediscovered in diverse contexts, and proven to be extremely useful in computer science.?.The book introduces readers to the many facets of, and recent developments in, wqos through chapters contributed by scholars from various fields. As such, it offers a valuable asset for logicians, mathematicians and computer scientists, as well as scholars and students..
出版日期Book 2020
關鍵詞Well Quasi-order; Combinatorics; Graph Theory; Proof Theory; Descriptive Set Theory; Maximal Order Type; O
版次1
doihttps://doi.org/10.1007/978-3-030-30229-0
isbn_softcover978-3-030-30231-3
isbn_ebook978-3-030-30229-0Series ISSN 1572-6126 Series E-ISSN 2212-7313
issn_series 1572-6126
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning影響因子(影響力)




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning影響因子(影響力)學科排名




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning網絡公開度




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning網絡公開度學科排名




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning被引頻次




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning被引頻次學科排名




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning年度引用




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning年度引用學科排名




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning讀者反饋




書目名稱Well-Quasi Orders in Computation, Logic, Language and Reasoning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:17:07 | 只看該作者
Well, Better and In-Between,he equivalence between the two main approaches to defining . and state several essential results of . theory. After recalling the r?le played by the ideals of a . in its .ness, we give a new presentation of known examples of .s which fail to be .. We also provide new forbidden pattern conditions ens
板凳
發(fā)表于 2025-3-22 01:14:46 | 只看該作者
地板
發(fā)表于 2025-3-22 05:58:27 | 只看該作者
Strong WQO Tree Theorems,ions of Harvey Friedman’s tree theorem (abbr.: FT) on trees whose vertices are labeled by bounded natural numbers are (a) provable in second-order arithmetic .-. (also designated . below) that extends . by transfinite iteration of .-comprehension along arbitrary countable ordinals but (b) not provab
5#
發(fā)表于 2025-3-22 10:36:36 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:32 | 只看該作者
7#
發(fā)表于 2025-3-22 18:24:31 | 只看該作者
Recent Progress on Well-Quasi-ordering Graphs,ful extensions of them have been obtained since Vázsonyi proposed the conjecture about well-quasi-ordering trees by the topological minor relation in the 1940’s. In this article, we survey recent development of well-quasi-ordering on graphs and directed graphs by various graph containment relations,
8#
發(fā)表于 2025-3-23 00:58:28 | 只看該作者
,The Reverse Mathematics of?wqos?and?bqos,ifferent definitions of the concepts, and basic closure properties) and more advanced theorems. The classification from the reverse mathematics viewpoint of both kinds of results provides interesting challenges, and we cover also recent advances on some long standing open problems.
9#
發(fā)表于 2025-3-23 01:47:30 | 只看該作者
10#
發(fā)表于 2025-3-23 07:47:04 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-16 00:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
封丘县| 泽普县| 宣汉县| 金沙县| 阳泉市| 大理市| 元氏县| 宝坻区| 绿春县| 阳春市| 扬中市| 泗洪县| 湟中县| 道孚县| 满洲里市| 崇礼县| 亚东县| 周宁县| 石嘴山市| 舒城县| 潮州市| 通海县| 汝阳县| 白河县| 浦城县| 图片| 周口市| 疏勒县| 民勤县| 鸡西市| 临沭县| 永善县| 千阳县| 雷州市| 景洪市| 高陵县| 新宁县| 遂平县| 甘南县| 株洲县| 金堂县|