找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weil Conjectures, Perverse Sheaves and ?-adic Fourier Transform; Reinhardt Kiehl,Rainer Weissauer Book 2001 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: 實體
31#
發(fā)表于 2025-3-26 22:01:42 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
32#
發(fā)表于 2025-3-27 03:23:53 | 只看該作者
The Formalism of Derived Categories,of the category .(.), the notion of (short) exact sequences of complexes no longer exists and has to be replaced by the notion of distinguished triangles, which itself derives from the concept of mapping cones.
33#
發(fā)表于 2025-3-27 08:27:24 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
34#
發(fā)表于 2025-3-27 10:00:55 | 只看該作者
35#
發(fā)表于 2025-3-27 17:32:48 | 只看該作者
36#
發(fā)表于 2025-3-27 20:22:51 | 只看該作者
The Formalism of Derived Categories,ory is defined by making quasiisomorphisms into isomorphisms and this allows to identify complexes with their resolutions. Recall, that a complex map .′ → . is a quasiisomorphism, if the induced cohomology morphisms ..(.’) → ..(.)are isomorphisms in all degrees. However, by taking this localization
37#
發(fā)表于 2025-3-27 22:09:02 | 只看該作者
Perverse Sheaves,sky-MacPherson, which originally was not defined in terms of sheaf theory but rather using explicit chain complexes. Perhaps stimulated by the Kazhdan-Lusztig conjectures it was Deligne, who gave a reformulation of the notion of intersection cohomology within the setting of sheaf theory. In this for
38#
發(fā)表于 2025-3-28 03:46:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:04 | 只看該作者
40#
發(fā)表于 2025-3-28 13:17:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 08:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新竹市| 洱源县| 香港| 饶阳县| 阳谷县| 梁河县| 庄浪县| 西峡县| 崇州市| 江油市| 宿迁市| 台南市| 岳西县| 玛纳斯县| 民县| 陇川县| 江源县| 宜春市| 安平县| 菏泽市| 汶上县| 山阴县| 玛沁县| 无锡市| 滕州市| 五指山市| 肃北| 岢岚县| 霍山县| 德安县| 夹江县| 塘沽区| 进贤县| 乐清市| 凤凰县| 定西市| 富平县| 图片| 东乡| 平江县| 枝江市|