找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weil Conjectures, Perverse Sheaves and ?-adic Fourier Transform; Reinhardt Kiehl,Rainer Weissauer Book 2001 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 實體
21#
發(fā)表于 2025-3-25 05:17:40 | 只看該作者
22#
發(fā)表于 2025-3-25 08:54:28 | 只看該作者
Weil Conjectures, Perverse Sheaves and ?-adic Fourier Transform978-3-662-04576-3Series ISSN 0071-1136 Series E-ISSN 2197-5655
23#
發(fā)表于 2025-3-25 14:50:40 | 只看該作者
24#
發(fā)表于 2025-3-25 17:43:42 | 只看該作者
25#
發(fā)表于 2025-3-25 22:09:50 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:15 | 只看該作者
Lefschetz Theory and the Brylinski-Radon Transform,play the role of a base scheme in the following. Consider the diagram Products are fiber products over .(.), if not stated otherwise. The maps .., ..,.are the obvious projections. For a complex . on ?. × . we often write G for ..*[.]..
27#
發(fā)表于 2025-3-26 05:37:01 | 只看該作者
Perverse Sheaves,-Lusztig conjectures it was Deligne, who gave a reformulation of the notion of intersection cohomology within the setting of sheaf theory. In this form intersection cohomology can be defined also for finitely generated schemes over a field of characteristic zero, over a finite field or over the algebraic closure of a finite field.
28#
發(fā)表于 2025-3-26 10:47:11 | 只看該作者
Lefschetz Theory and the Brylinski-Radon Transform,play the role of a base scheme in the following. Consider the diagram Products are fiber products over .(.), if not stated otherwise. The maps .., ..,.are the obvious projections. For a complex . on ?. × . we often write G for ..*[.]..
29#
發(fā)表于 2025-3-26 16:27:48 | 只看該作者
Book 2001this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
30#
發(fā)表于 2025-3-26 19:42:21 | 只看該作者
0071-1136 ork of the sheaf theoretic theory of perverse sheaves.The l-In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon an
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 04:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蛟河市| 运城市| 额敏县| 随州市| 沂南县| 普安县| 浮山县| 高雄市| 秭归县| 尚义县| 巫溪县| 吉安县| 宜城市| 和政县| 平湖市| 乃东县| 葵青区| 万宁市| 延安市| 乌海市| 界首市| 金秀| 蒙城县| 梓潼县| 高邮市| 昌宁县| 亚东县| 襄垣县| 霍林郭勒市| 大安市| 河源市| 璧山县| 饶平县| 友谊县| 宁都县| 福泉市| 大邑县| 铜陵市| 枣庄市| 闸北区| 安庆市|