找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 使作嘔
21#
發(fā)表于 2025-3-25 04:00:53 | 只看該作者
Automated Multi-scale Contrastive Learning with?Sample-Awareness for?Graph Classificationopology of the input graph and refine neighborhood information. Extensive experiments on eight benchmark datasets demonstrate that our proposed SaMGCL achieves superior graph classification performance compared to the current state-of-the-art approaches.
22#
發(fā)表于 2025-3-25 09:52:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:22 | 只看該作者
CGAR: A Contrastive Graph Attention Residual Network for?Enhanced Fake News Detection Additionally, the integration of contrastive learning into the loss function enables the model to explicitly differentiate between conversational threads of identical and distinct classes, thereby addressing the challenge of class imbalance by emphasizing sample similarities. Empirical evaluations
24#
發(fā)表于 2025-3-25 19:46:54 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:18 | 只看該作者
26#
發(fā)表于 2025-3-26 03:59:09 | 只看該作者
LPRL-GCNN for?Multi-relation Link Prediction in?Educationof judging what kind of relationship. This paper proposes a new link prediction model based on representation learning, namely LPRL-GCNN model - LPRL-GCNN (Link Prediction model based on Representation Learning). This model can not only predict new knowledge concept associations, but also predict th
27#
發(fā)表于 2025-3-26 06:09:46 | 只看該作者
MERGE: Multi-view Relationship Graph Network for?Event-Driven Stock Movement Predictionem. MERGE involves a Multi-View Relationship Graph Network module that constructs multiple dynamic graphs by mining relational information in prices to model the various types of stock interactions in the market from different perspectives. In addition, to sufficiently consider the impact of externa
28#
發(fā)表于 2025-3-26 10:16:34 | 只看該作者
Relation-Aware Heterogeneous Graph Neural Network for?Fraud Detection features and topology information for GNNs, allowing for precise and scalable fraud detection. Specifically, we first use a relation-aware node map-reduce to preprocess the computational graph. Then we use the hybrid propagation scheme, which optimizes the collection of neighborhood nodes with redu
29#
發(fā)表于 2025-3-26 14:55:37 | 只看該作者
30#
發(fā)表于 2025-3-26 17:33:11 | 只看該作者
Relation-Aware Heterogeneous Graph Neural Network for?Fraud Detection features and topology information for GNNs, allowing for precise and scalable fraud detection. Specifically, we first use a relation-aware node map-reduce to preprocess the computational graph. Then we use the hybrid propagation scheme, which optimizes the collection of neighborhood nodes with redu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 兴安盟| 共和县| 营山县| 阳新县| 龙口市| 明光市| 德令哈市| 盱眙县| 黄山市| 乾安县| 新沂市| 夏津县| 柳江县| 公主岭市| 林口县| 讷河市| 宜州市| 新沂市| 唐河县| 博爱县| 西吉县| 江陵县| 龙州县| 马公市| 舒城县| 大荔县| 金山区| 高青县| 同仁县| 邯郸市| 屏山县| 水富县| 泽州县| 醴陵市| 肃北| 肥东县| 会同县| 石棉县| 正安县| 凤冈县|