找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: 使作嘔
11#
發(fā)表于 2025-3-23 10:31:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:57 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:16 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
14#
發(fā)表于 2025-3-23 22:36:08 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
15#
發(fā)表于 2025-3-24 04:36:47 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
16#
發(fā)表于 2025-3-24 09:07:11 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
17#
發(fā)表于 2025-3-24 11:59:52 | 只看該作者
Attributed Heterogeneous Graph Embedding with?Meta-graph Attentionlly, the node embeddings under different meta-graphs are fused by considering the importance of meta-graphs. Experimental results on three real datasets show the proposed AHEMA model outperforms the baselines on node classification and node clustering tasks.
18#
發(fā)表于 2025-3-24 16:37:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:22 | 只看該作者
Automated Multi-scale Contrastive Learning with?Sample-Awareness for?Graph Classificationopology of the input graph and refine neighborhood information. Extensive experiments on eight benchmark datasets demonstrate that our proposed SaMGCL achieves superior graph classification performance compared to the current state-of-the-art approaches.
20#
發(fā)表于 2025-3-25 02:54:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集安市| 镇宁| 麟游县| 芦山县| 东乌珠穆沁旗| 通山县| 巨野县| 东宁县| 沂水县| 咸丰县| 潮安县| 常州市| 定襄县| 徐汇区| 通化县| 临夏市| 元阳县| 常宁市| 高雄市| 红原县| 连江县| 翁牛特旗| 马龙县| 上饶市| 泾阳县| 明星| 新安县| 醴陵市| 华蓥市| 霍州市| 福州市| 乌拉特中旗| 喜德县| 明水县| 长岛县| 大悟县| 株洲县| 含山县| 朝阳市| 洛南县| 青龙|