找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Web and Big Data; 8th International Jo Wenjie Zhang,Anthony Tung,Hongjie Guo Conference proceedings 2024 The Editor(s) (if applicable) and

[復制鏈接]
樓主: 使作嘔
11#
發(fā)表于 2025-3-23 10:31:13 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:57 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:16 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
14#
發(fā)表于 2025-3-23 22:36:08 | 只看該作者
Product Anomaly Detection on Heterogeneous Graphs with Sparse Labelss, we propose a novel approach for product anomaly detection on heterogeneous graphs. Our approach consists of three key modules: 1) An imbalanced sample strategy that effectively handles class imbalance and high heterogeneity; 2) A label propagation module that tackles the issue of label sparsity;
15#
發(fā)表于 2025-3-24 04:36:47 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
16#
發(fā)表于 2025-3-24 09:07:11 | 只看該作者
Generic and?Scalable Detection of?Risky Transactions Using Density Flows: Applications to?Financial d reduce computation cost. The generic metric and k-Hop density graph detection make our algorithm suitable for the varieties of risky scenarios. Extensive experimental results on several real and synthetic datasets demonstrate the effectiveness of our approach compared to dense subgraph algorithms.
17#
發(fā)表于 2025-3-24 11:59:52 | 只看該作者
Attributed Heterogeneous Graph Embedding with?Meta-graph Attentionlly, the node embeddings under different meta-graphs are fused by considering the importance of meta-graphs. Experimental results on three real datasets show the proposed AHEMA model outperforms the baselines on node classification and node clustering tasks.
18#
發(fā)表于 2025-3-24 16:37:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:22 | 只看該作者
Automated Multi-scale Contrastive Learning with?Sample-Awareness for?Graph Classificationopology of the input graph and refine neighborhood information. Extensive experiments on eight benchmark datasets demonstrate that our proposed SaMGCL achieves superior graph classification performance compared to the current state-of-the-art approaches.
20#
發(fā)表于 2025-3-25 02:54:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
文山县| 安乡县| 徐水县| 苏尼特左旗| 同仁县| 依兰县| 泸定县| 本溪| 缙云县| 睢宁县| 南江县| 德昌县| 津市市| 东明县| 吉林省| 龙山县| 淮安市| 温宿县| 得荣县| 洪湖市| 板桥市| 伊川县| 海兴县| 宜春市| 葵青区| 三门峡市| 库车县| 吕梁市| 昭通市| 涿州市| 桂东县| 蕲春县| 巴南区| 巴东县| 株洲县| 延安市| 苗栗市| 右玉县| 江山市| 洛扎县| 逊克县|