找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weakly Connected Neural Networks; Frank C. Hoppensteadt,Eugene M. Izhikevich Book 1997 Springer Science+Business Media New York 1997 biolo

[復(fù)制鏈接]
樓主: antithetic
41#
發(fā)表于 2025-3-28 17:27:43 | 只看該作者
42#
發(fā)表于 2025-3-28 22:17:00 | 只看該作者
Multiple Andronov-Hopf Bifurcation slow time, and .., .., .., .. ∈ ?. In this chapter we study general properties of this canonical model. In particular, we are interested in the stability of the origin .. = … = .. = 0 and in the possibility of in-phase and anti-phase locking.
43#
發(fā)表于 2025-3-28 22:54:54 | 只看該作者
Multiple Cusp Bifurcationwhere ′ = ., τ is slow time, .., .., .... are real variables, and σ. = ±1. In this chapter we study some neurocomputational properties of this canonical model. In particular, we use Hirsch’s theorem to prove that the canonical model can work as a globally asymptotically stable neural network (GAS-ty
44#
發(fā)表于 2025-3-29 06:03:21 | 只看該作者
45#
發(fā)表于 2025-3-29 10:16:21 | 只看該作者
Neural Networkseds only local information about the behavior of the neuron near the rest potential. Thus, one can obtain some global information about behavior of a system by performing local analysis. Our nonhyperbolic neural network approach uses this observation.
46#
發(fā)表于 2025-3-29 12:42:34 | 只看該作者
47#
發(fā)表于 2025-3-29 19:18:08 | 只看該作者
48#
發(fā)表于 2025-3-29 22:10:03 | 只看該作者
49#
發(fā)表于 2025-3-30 01:52:26 | 只看該作者
Introduction to Canonical Modelscould discourage biologists from using mathematics and/or mathematicians. A reasonable way to circumvent this problem is to derive results that are largely independent of the model and that can be observed in a broad class of models. For example, if one modifies a model by adding more parameters and variables, similar results should hold.
50#
發(fā)表于 2025-3-30 06:08:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦甸市| 泗水县| 金秀| 博爱县| 镇安县| 涪陵区| 兴隆县| 长垣县| 安化县| 吉林市| 镇沅| 都安| 儋州市| 龙门县| 余江县| 平江县| 克什克腾旗| 米易县| 金溪县| 普陀区| 临猗县| 会宁县| 修武县| 甘洛县| 华容县| 高台县| 丰镇市| 余庆县| 格尔木市| 启东市| 简阳市| 颍上县| 广汉市| 泾阳县| 平远县| 彭山县| 临猗县| 五寨县| 中宁县| 巧家县| 威海市|