找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weakly Connected Neural Networks; Frank C. Hoppensteadt,Eugene M. Izhikevich Book 1997 Springer Science+Business Media New York 1997 biolo

[復制鏈接]
樓主: antithetic
31#
發(fā)表于 2025-3-26 23:36:40 | 只看該作者
32#
發(fā)表于 2025-3-27 04:21:23 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:17 | 只看該作者
Local Analysis of Weakly Connected Mapsconsider weakly connected networks of difference equations, or mappings, of the form . where the variables .. ∈ ?., the parameters λ ∈ Λ,ρ ∈ R and the functions .. and .. have the same meaning as in previous chapters. The weakly connected mapping (7.1) can be also written in the form . where .. is t
34#
發(fā)表于 2025-3-27 11:30:07 | 只看該作者
35#
發(fā)表于 2025-3-27 17:26:24 | 只看該作者
Local Analysis of WCNNsrium point. First we use the Hartman-Grobman theorem to show that the network’s local activity is not interesting from the neurocomputational point of view unless the equilibrium corresponds to a bifurcation point. In biological terms such neurons are said to be near a threshold. Then we use the cen
36#
發(fā)表于 2025-3-27 19:23:16 | 只看該作者
Weakly Connected Oscillatorsuation in the uncoupled system (ε = 0) . has a hyperbolic stable limit cycle attractor γ ? ?. The activity on the limit cycle can be described in terms of its phase . of oscillation . where Ω.(λ) is the natural frequency of oscillations. The dynamics of the oscillatory weakly connected system (9.1)
37#
發(fā)表于 2025-3-28 01:49:59 | 只看該作者
38#
發(fā)表于 2025-3-28 05:37:26 | 只看該作者
39#
發(fā)表于 2025-3-28 08:09:47 | 只看該作者
40#
發(fā)表于 2025-3-28 12:13:42 | 只看該作者
Local Analysis of Weakly Connected Mapsconsider weakly connected networks of difference equations, or mappings, of the form . where the variables .. ∈ ?., the parameters λ ∈ Λ,ρ ∈ R and the functions .. and .. have the same meaning as in previous chapters. The weakly connected mapping (7.1) can be also written in the form . where .. is t
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
孝感市| 海盐县| 永丰县| 惠水县| 平利县| 扎囊县| 蒙山县| 云安县| 江口县| 平阳县| 靖州| 溆浦县| 如皋市| 花莲市| 梓潼县| 贵溪市| 伊通| 弋阳县| 乌鲁木齐市| 罗城| 黎川县| 彭阳县| 利津县| 南雄市| 微山县| 嘉鱼县| 博爱县| 观塘区| 涡阳县| 云安县| 阜阳市| 金溪县| 鲁山县| 岳阳县| 惠东县| 苍梧县| 仙游县| 兰州市| 石城县| 团风县| 丽江市|