找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Weakly Connected Neural Networks; Frank C. Hoppensteadt,Eugene M. Izhikevich Book 1997 Springer Science+Business Media New York 1997 biolo

[復(fù)制鏈接]
查看: 32479|回復(fù): 74
樓主
發(fā)表于 2025-3-21 17:20:18 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Weakly Connected Neural Networks
編輯Frank C. Hoppensteadt,Eugene M. Izhikevich
視頻videohttp://file.papertrans.cn/1022/1021368/1021368.mp4
概述Recent studies of bifurcations have inspired a new approach to brain modelling * Shows how some synaptic organisations have especially rich dynamic behaviour *.Hoppensteadt is a well-known author
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Weakly Connected Neural Networks;  Frank C. Hoppensteadt,Eugene M. Izhikevich Book 1997 Springer Science+Business Media New York 1997 biolo
描述This book is devoted to an analysis of general weakly connected neural networks (WCNNs) that can be written in the form (0.1) m Here, each Xi E IR is a vector that summarizes all physiological attributes of the ith neuron, n is the number of neurons, Ii describes the dynam- ics of the ith neuron, and gi describes the interactions between neurons. The small parameter € indicates the strength of connections between the neurons. Weakly connected systems have attracted much attention since the sec- ond half of seventeenth century, when Christian Huygens noticed that a pair of pendulum clocks synchronize when they are attached to a light- weight beam instead of a wall. The pair of clocks is among the first weakly connected systems to have been studied. Systems of the form (0.1) arise in formal perturbation theories developed by Poincare, Liapunov and Malkin, and in averaging theories developed by Bogoliubov and Mitropolsky.
出版日期Book 1997
關(guān)鍵詞biology; calculus; differential equation; neural network; neurons; neuroscience
版次1
doihttps://doi.org/10.1007/978-1-4612-1828-9
isbn_softcover978-1-4612-7302-8
isbn_ebook978-1-4612-1828-9Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

書目名稱Weakly Connected Neural Networks影響因子(影響力)




書目名稱Weakly Connected Neural Networks影響因子(影響力)學(xué)科排名




書目名稱Weakly Connected Neural Networks網(wǎng)絡(luò)公開度




書目名稱Weakly Connected Neural Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Weakly Connected Neural Networks被引頻次




書目名稱Weakly Connected Neural Networks被引頻次學(xué)科排名




書目名稱Weakly Connected Neural Networks年度引用




書目名稱Weakly Connected Neural Networks年度引用學(xué)科排名




書目名稱Weakly Connected Neural Networks讀者反饋




書目名稱Weakly Connected Neural Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:20 | 只看該作者
https://doi.org/10.1007/978-1-4612-1828-9biology; calculus; differential equation; neural network; neurons; neuroscience
板凳
發(fā)表于 2025-3-22 01:47:25 | 只看該作者
地板
發(fā)表于 2025-3-22 05:13:53 | 只看該作者
Weakly Connected Neural Networks978-1-4612-1828-9Series ISSN 0066-5452 Series E-ISSN 2196-968X
5#
發(fā)表于 2025-3-22 09:41:44 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:22 | 只看該作者
IntroductionIn this chapter we give definitions and explanations of basic neurophysio-logical terminology that we use in the book. We do not intend to provide a comprehensive background on various topics.
7#
發(fā)表于 2025-3-22 18:31:05 | 只看該作者
Saddle-Node on a Limit CycleIn this chapter we study a weakly connected network . of neurons each having a saddle-node bifurcation on a limit cycle. Such neurons are said to have Class 1 neural excitability. This bifurcation provides an important example of when local analysis at an equilibrium renders global information about the system behavior.
8#
發(fā)表于 2025-3-23 00:50:29 | 只看該作者
Quasi-Static BifurcationsIn this chapter we analyze the canonical models (6.17) and (6.24) for singu-larly perturbed WCNNs at quasi-static saddle-node and quasi-static cusp bifurcations. In particular, we consider the canonical models in the special case ..
9#
發(fā)表于 2025-3-23 02:10:45 | 只看該作者
10#
發(fā)表于 2025-3-23 09:14:54 | 只看該作者
Synaptic Organizations of the BrainIn this chapter we study the relationship between synaptic organizations and dynamical properties of networks of neural oscillators. In particular, we are interested in which synaptic organizations can memorize and reproduce phase information. Most of our results are obtained for neural oscillators near multiple Andronov-Hopf bifurcations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 武鸣县| 昌乐县| 平度市| 合作市| 娱乐| 南岸区| 尚志市| 祁东县| 凌云县| 宁晋县| 罗田县| 石狮市| 余干县| 寿宁县| 吉林市| 曲沃县| 镶黄旗| 三穗县| 无棣县| 五常市| 内江市| 遂平县| 桐庐县| 伊宁市| 永泰县| 永寿县| 宁阳县| 华阴市| 建平县| 荥经县| 穆棱市| 麻栗坡县| 分宜县| 崇州市| 梁平县| 措美县| 哈尔滨市| 麻城市| 高青县| 长丰县|