找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Localization Operators; M. W. Wong Book 2002 Springer Basel AG 2002 functional analysis.harmonic analysis.mathemati

[復(fù)制鏈接]
樓主: 突然
51#
發(fā)表于 2025-3-30 10:06:11 | 只看該作者
The Affine Group,We study in this chapter the affine group ., the Hardy space ..(?) and an irreducible and unitary representation π : . → .(..(?)) of . on ..(?) for which the set .(π) of all admissible wavelets for the representation π : . → .(..(?)) is a proper subset of the unit sphere with at the origin in ..(?).
52#
發(fā)表于 2025-3-30 16:21:59 | 只看該作者
The Affine Group,We study in this chapter the affine group ., the Hardy space ..(?) and an irreducible and unitary representation π : . → .(..(?)) of . on ..(?) for which the set .(π) of all admissible wavelets for the representation π : . → .(..(?)) is a proper subset of the unit sphere with at the origin in ..(?).
53#
發(fā)表于 2025-3-30 16:59:11 | 只看該作者
54#
發(fā)表于 2025-3-31 00:20:35 | 只看該作者
Topological Groups,ons, which we give in the next chapter. Basic references include Folland [27] and Pontryagin [68]. The book [45] is a good reference for the basic group theory used in this book. As for general topology, the books [54] and [64] by Kelley and Munkres respectively are standard references.
55#
發(fā)表于 2025-3-31 01:53:12 | 只看該作者
Unitary Representations,ost basic topics are touched on in this chapter. The more advanced theory of squareintegrable representations is given in the next chapter. A good reference for this chapter is Chapter 3 of the book [27] by Folland. A more comprehensive treatise is the book [55] by Kirillov.
56#
發(fā)表于 2025-3-31 05:26:39 | 只看該作者
Unitary Representations,ost basic topics are touched on in this chapter. The more advanced theory of squareintegrable representations is given in the next chapter. A good reference for this chapter is Chapter 3 of the book [27] by Folland. A more comprehensive treatise is the book [55] by Kirillov.
57#
發(fā)表于 2025-3-31 10:02:46 | 只看該作者
58#
發(fā)表于 2025-3-31 15:03:43 | 只看該作者
Wavelet Transforms,his book. It is in fact the wavelet transform associated to the admissible wavelet yo for the irreducible and square-integrable representation π: . → . of a locally compact and Hausdorff group . on a Hilbert space. To be more precise, we introduce the following definition.
59#
發(fā)表于 2025-3-31 17:54:26 | 只看該作者
60#
發(fā)表于 2025-4-1 00:36:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉南县| 彰化县| 修武县| 石门县| 襄汾县| 永顺县| 顺义区| 迁西县| 孙吴县| 彰化市| 和硕县| 松桃| 城固县| 永济市| 集贤县| 二连浩特市| 安吉县| 惠来县| 内江市| 洛南县| 翁源县| 太湖县| 长岛县| 正定县| 体育| 新田县| 昭通市| 峡江县| 吉首市| 通江县| 常熟市| 桂林市| 交口县| 山东省| 东安县| 安阳县| 布拖县| 张家口市| 东阿县| 分宜县| 鱼台县|