找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Localization Operators; M. W. Wong Book 2002 Springer Basel AG 2002 functional analysis.harmonic analysis.mathemati

[復制鏈接]
樓主: 突然
11#
發(fā)表于 2025-3-23 13:35:08 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
12#
發(fā)表于 2025-3-23 16:53:52 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
13#
發(fā)表于 2025-3-23 21:34:33 | 只看該作者
Localization Operators,bert space . In this chapter we introduce a class of bounded linear operators .. : . → ., which are related to the wavelet transform .. : . → ..(.) defined by (7.1), for all . in .. (.),1 ≤ . ≤ ∞. We first tackle this problem for . in L.(.) or ..(.). In the case when . = 1, we do not need the assump
14#
發(fā)表于 2025-3-24 01:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:53 | 只看該作者
,,, Norm Inequalities, 1 ≤ , ≤ ∞,reducible and square-integrable representation of a locally compact and Hausdorff group . on a Hilbert space . is in the Schatten-von Neumann class .., 1 ≤ . ≤ ∞. When . = 1, the irreducibility of the representation π: . → .(.) can be dispensed with.
16#
發(fā)表于 2025-3-24 06:41:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:15 | 只看該作者
18#
發(fā)表于 2025-3-24 17:39:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:06 | 只看該作者
Two-Wavelet Theory,ion π: . → . of . on . In this chapter we introduce the notion of a localization operator ..: . → ., which is defined in terms of a symbol . in ... and two admissible wavelets . and . for the square-integrable representation π: . →. of . on .. It is proved in this chapter that ..: . → . is in .. and
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 01:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南岸区| 新和县| 白河县| 长乐市| 来宾市| 颍上县| 阿巴嘎旗| 林口县| 建水县| 永修县| 灵璧县| 茶陵县| 万山特区| 江华| 健康| 蒙自县| 洞头县| 虹口区| 澄江县| 宜城市| 隆尧县| 都昌县| 三台县| 桐柏县| 平原县| 宁晋县| 元谋县| 板桥市| 金塔县| 离岛区| 克什克腾旗| 庐江县| 永宁县| 宁津县| 柳江县| 龙江县| 凌海市| 绥化市| 内丘县| 亳州市| 都江堰市|