找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Wavelet Transforms and Localization Operators; M. W. Wong Book 2002 Springer Basel AG 2002 functional analysis.harmonic analysis.mathemati

[復制鏈接]
樓主: 突然
11#
發(fā)表于 2025-3-23 13:35:08 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
12#
發(fā)表于 2025-3-23 16:53:52 | 只看該作者
Adjoints,ole since its appearance in Example 5.7. In this chapter we show that it is an object of interest in its own right. We are particularly interested in the adjoints of wavelet transforms for left regular representations of unimodular groups.
13#
發(fā)表于 2025-3-23 21:34:33 | 只看該作者
Localization Operators,bert space . In this chapter we introduce a class of bounded linear operators .. : . → ., which are related to the wavelet transform .. : . → ..(.) defined by (7.1), for all . in .. (.),1 ≤ . ≤ ∞. We first tackle this problem for . in L.(.) or ..(.). In the case when . = 1, we do not need the assump
14#
發(fā)表于 2025-3-24 01:07:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:39:53 | 只看該作者
,,, Norm Inequalities, 1 ≤ , ≤ ∞,reducible and square-integrable representation of a locally compact and Hausdorff group . on a Hilbert space . is in the Schatten-von Neumann class .., 1 ≤ . ≤ ∞. When . = 1, the irreducibility of the representation π: . → .(.) can be dispensed with.
16#
發(fā)表于 2025-3-24 06:41:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:15 | 只看該作者
18#
發(fā)表于 2025-3-24 17:39:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:35:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:06 | 只看該作者
Two-Wavelet Theory,ion π: . → . of . on . In this chapter we introduce the notion of a localization operator ..: . → ., which is defined in terms of a symbol . in ... and two admissible wavelets . and . for the square-integrable representation π: . →. of . on .. It is proved in this chapter that ..: . → . is in .. and
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 01:44
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台北市| 鄂托克前旗| 南和县| 巴东县| 弥渡县| 白朗县| 太仆寺旗| 峨眉山市| 呼图壁县| 嘉义县| 通渭县| 扶绥县| 合江县| 孟州市| 大兴区| 乃东县| 屯昌县| 栖霞市| 平顶山市| 高邮市| 鄂尔多斯市| 萍乡市| 克什克腾旗| 太白县| 本溪市| 古蔺县| 改则县| 新平| 泸州市| 措勤县| 本溪| 盱眙县| 贵阳市| 西宁市| 洱源县| 大新县| 兴义市| 晋宁县| 元谋县| 浪卡子县| 岑巩县|