找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; Third International Sandip Das,Ryuhei Uehara Conference proceedings 2009 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: ossicles
41#
發(fā)表于 2025-3-28 16:17:54 | 只看該作者
Minmax Tree Cover in the Euclidean Space balanced tree partitioning problem requires to cover all vertices in . by a set . of . trees of the graph so that the ratio . of . to .(..)/. is minimized, where .. denotes a minimum spanning tree of .. The problem has been used as a core analysis in designing approximation algorithms for several t
42#
發(fā)表于 2025-3-28 21:39:07 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:40 | 只看該作者
44#
發(fā)表于 2025-3-29 04:50:34 | 只看該作者
A Separator Theorem for String Graphs and Its Applications bipartite subgraph .. has at most ... edges, where .. is a constant depending only on .. Another application is that, for any .?>?0, there is an integer .(.) such that every string graph with . vertices and girth at least .(.) has at most (1?+?.). edges.
45#
發(fā)表于 2025-3-29 08:22:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:50:26 | 只看該作者
47#
發(fā)表于 2025-3-29 16:03:55 | 只看該作者
Approximating Shortest Paths in Graphsny interesting variations of the original problem..In this article, we trace some of the fundamental developments like spanners and distance oracles, their underlying constructions, as well as their applications to the approximate all-pairs shortest paths.
48#
發(fā)表于 2025-3-29 22:00:04 | 只看該作者
49#
發(fā)表于 2025-3-30 02:42:00 | 只看該作者
50#
發(fā)表于 2025-3-30 04:57:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠州市| 临沭县| 宜兰市| 永寿县| 崇文区| 翁源县| 东乡县| 修武县| 海宁市| 清苑县| 安龙县| 会同县| 济宁市| 克山县| 南宫市| 贵阳市| 余干县| 玛曲县| 南雄市| 新兴县| 石景山区| 措美县| 白银市| 汉源县| 新建县| 礼泉县| 榆林市| 古田县| 洮南市| 洛南县| 中西区| 金山区| 新化县| 汉寿县| 永昌县| 安龙县| 新化县| 惠安县| 金沙县| 乌兰县| 家居|