找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: WALCOM: Algorithms and Computation; Third International Sandip Das,Ryuhei Uehara Conference proceedings 2009 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: ossicles
21#
發(fā)表于 2025-3-25 06:45:28 | 只看該作者
22#
發(fā)表于 2025-3-25 07:38:13 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:08 | 只看該作者
24#
發(fā)表于 2025-3-25 18:26:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:48:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:44:14 | 只看該作者
Maximum Neighbour Voronoi Games . points with the target of maximizing total Voronoi area of its sites in the Voronoi diagram of 2. points. In this paper we address this problem by introducing Voronoi games . where the basic objective of an optimal playing strategy is to acquire more neighbors than the opponent. We consider sever
27#
發(fā)表于 2025-3-26 05:39:52 | 只看該作者
28#
發(fā)表于 2025-3-26 12:01:48 | 只看該作者
On Exact Solutions to the Euclidean Bottleneck Steiner Tree Problemt most . Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio .. We focus on finding exact solutions to the problem for a small constant .. Based on geometric properties of optimal location of Steiner p
29#
發(fā)表于 2025-3-26 14:48:00 | 只看該作者
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
30#
發(fā)表于 2025-3-26 20:30:32 | 只看該作者
Colinear Coloring on Graphsrough which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number .(.), for any graph ., and show that . can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph . is a vertex coloring su
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垫江县| 波密县| 洛川县| 淄博市| 来宾市| 青铜峡市| 望谟县| 泰州市| 广宗县| 东安县| 土默特左旗| 南昌市| 新闻| 房产| 射洪县| 包头市| 大名县| 璧山县| 林西县| 霍山县| 扶风县| 高邑县| 焦作市| 佛坪县| 湘潭县| 平原县| 清水县| 吴桥县| 喜德县| 德钦县| 古田县| 中超| 万山特区| 夹江县| 通河县| 贡嘎县| 西吉县| 张家港市| 夹江县| 沿河| 淮北市|