找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-27 00:37:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:47:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:53 | 只看該作者
Cemal Kavalc?o?lu,Bülent BilgehanLet {..}. be an increasing sequence of positive integers. In this chapter we investigate some conditions under which the sum of the series . is an irrational number, and then we apply these results to the case for which the sequence {..}. is the sequence of Fermat numbers.
34#
發(fā)表于 2025-3-27 12:21:42 | 只看該作者
35#
發(fā)表于 2025-3-27 17:27:02 | 只看該作者
https://doi.org/10.1007/978-3-030-04275-2In this chapter we show how to apply Fermat numbers to generate infinitely many pseudoprimes and superpseudoprimes. To define pseudoprimes and superpseudoprimes, we will need to make use of Fermat’s little theorem which is a centerpiece of number theory. It gives a fundamental property of primes and is the basis of most tests for primality.
36#
發(fā)表于 2025-3-27 18:15:25 | 只看該作者
Studies in Systems, Decision and ControlWe will explore generalizations of Fermat numbers that share many of the same properties of the Fermat numbers; these properties were given in earlier chapters. We will also investigate other numbers such as the Cullen numbers, which bear some resemblance to the Fermat numbers.
37#
發(fā)表于 2025-3-28 00:53:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:55:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:34:17 | 只看該作者
17 Lectures on Fermat Numbers978-0-387-21850-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
40#
發(fā)表于 2025-3-28 12:42:10 | 只看該作者
https://doi.org/10.1007/978-0-387-21850-2Fermat; Fermat Numbers; History of Mathematics; Mersenne number; Prime; number theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
郸城县| 水城县| 新河县| 五家渠市| 深州市| 萍乡市| 惠州市| 新兴县| 开远市| 通江县| 金坛市| 杂多县| 宜都市| 黎城县| 武穴市| 海淀区| 攀枝花市| 长泰县| 温泉县| 湖口县| 宕昌县| 佛山市| 棋牌| 铅山县| 谢通门县| 将乐县| 顺平县| 全南县| 天全县| 页游| 深泽县| 塔河县| 青川县| 浪卡子县| 乌恰县| 巴彦淖尔市| 商丘市| 内江市| 兴山县| 泰宁县| 河间市|