找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 12:37:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:55 | 只看該作者
,Fermat’s Little Theorem, Pseudoprimes, and Superpseudoprimes,978-1-4614-7397-8
13#
發(fā)表于 2025-3-23 19:34:17 | 只看該作者
Euclidean Construction of the Regular Heptadecagon,978-3-642-60521-5
14#
發(fā)表于 2025-3-24 02:01:29 | 只看該作者
Book 2001acting the attention of amateur and professional mathematicians for over 350 years. This book was written in honor of the 400th anniversary of his birth and is based on a series of lectures given by the authors. The purpose of this book is to provide readers with an overview of the many properties o
15#
發(fā)表于 2025-3-24 04:28:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:48 | 只看該作者
Matthew Suarez,Frederic Parke,Filipe Castro [Williams, 1988]. In 1878, F. Proth stated the following theorem (see [Proth, 1878b, 1978c] and see [Robinson, 1957b], [Sierpiński, 1964a] for proofs of this theorem), which can be applied to verify easily the primality of divisors of Fermat numbers for . < 2. (see [Robinson, 1957a] and [Robinson, 1958]; also compare with Suyama’s Theorem 4.22).
18#
發(fā)表于 2025-3-24 16:36:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:32:59 | 只看該作者
The Minerals, Metals & Materials Series7 equal parts by geometric means (see Figure 17.3 and (17.3)). Here he essentially used the fact that 17 is a Fermat prime. This fundamental discovery is presented on the base of his statue in Brunswick (in German .), where he was born (see Figure 17.4).
20#
發(fā)表于 2025-3-25 00:17:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岑溪市| 东丽区| 漳浦县| 阳西县| 邯郸县| 海宁市| 肇源县| 徐州市| 长子县| 乐至县| 额尔古纳市| 扶余县| 乐业县| 淳安县| 桑日县| 平罗县| 灵山县| 兴安县| 岐山县| 都安| 沙雅县| 且末县| 班戈县| 宜宾县| 南澳县| 绥宁县| 莱阳市| 岳西县| 巴彦淖尔市| 博爱县| 吴江市| 阳江市| 吉林省| 蒲江县| 深州市| 陇川县| 阿巴嘎旗| 三门峡市| 红桥区| 滨州市| 韶关市|