找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復制鏈接]
樓主: 相似
11#
發(fā)表于 2025-3-23 12:37:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:46:55 | 只看該作者
,Fermat’s Little Theorem, Pseudoprimes, and Superpseudoprimes,978-1-4614-7397-8
13#
發(fā)表于 2025-3-23 19:34:17 | 只看該作者
Euclidean Construction of the Regular Heptadecagon,978-3-642-60521-5
14#
發(fā)表于 2025-3-24 02:01:29 | 只看該作者
Book 2001acting the attention of amateur and professional mathematicians for over 350 years. This book was written in honor of the 400th anniversary of his birth and is based on a series of lectures given by the authors. The purpose of this book is to provide readers with an overview of the many properties o
15#
發(fā)表于 2025-3-24 04:28:43 | 只看該作者
16#
發(fā)表于 2025-3-24 08:13:51 | 只看該作者
17#
發(fā)表于 2025-3-24 11:33:48 | 只看該作者
Matthew Suarez,Frederic Parke,Filipe Castro [Williams, 1988]. In 1878, F. Proth stated the following theorem (see [Proth, 1878b, 1978c] and see [Robinson, 1957b], [Sierpiński, 1964a] for proofs of this theorem), which can be applied to verify easily the primality of divisors of Fermat numbers for . < 2. (see [Robinson, 1957a] and [Robinson, 1958]; also compare with Suyama’s Theorem 4.22).
18#
發(fā)表于 2025-3-24 16:36:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:32:59 | 只看該作者
The Minerals, Metals & Materials Series7 equal parts by geometric means (see Figure 17.3 and (17.3)). Here he essentially used the fact that 17 is a Fermat prime. This fundamental discovery is presented on the base of his statue in Brunswick (in German .), where he was born (see Figure 17.4).
20#
發(fā)表于 2025-3-25 00:17:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
栾城县| 吉林市| 宁陕县| 东丽区| 尖扎县| 灯塔市| 香河县| 桂平市| 高唐县| 舟曲县| 九寨沟县| 莱芜市| 屏东县| 洞口县| 五台县| 海南省| 宁南县| 新乐市| 吐鲁番市| 西林县| 盈江县| 报价| 顺昌县| 翁牛特旗| 美姑县| 新晃| 昌黎县| 聊城市| 商河县| 嘉鱼县| 浮梁县| 兴宁市| 武宣县| 内黄县| 方城县| 宾阳县| 九龙坡区| 临夏市| 景泰县| 榆社县| 泰和县|