找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 13th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2021 The Edi

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 16:07:25 | 只看該作者
42#
發(fā)表于 2025-3-28 20:01:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:58:19 | 只看該作者
?kobilanzierung und Entscheidungstheorieans. The model describes the most effective strategic behavior between two participants during a battle or in a war. Moreover, we compare the results of the dynamical analysis to Game Theory, considering this conflict as a dynamic game.
44#
發(fā)表于 2025-3-29 05:54:10 | 只看該作者
https://doi.org/10.1007/978-3-642-59994-1cal applications are given. Precisely, the mathematical concept of atomicity (and, particularly, that of minimal atomicity) is extended, based on the non-differentiability of the motion curves associated to the motions of the structural units of a complex system on a fractal manifold.
45#
發(fā)表于 2025-3-29 10:24:06 | 只看該作者
https://doi.org/10.1007/978-3-030-70795-8Non-linear Dynamical Systems; Attractors and Fractals; Neural Synchronisation; Turbulent Systems; Separa
46#
發(fā)表于 2025-3-29 11:46:04 | 只看該作者
47#
發(fā)表于 2025-3-29 18:31:23 | 只看該作者
2213-8684 nd complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences.?.The respective chapters a
48#
發(fā)表于 2025-3-29 23:01:46 | 只看該作者
49#
發(fā)表于 2025-3-29 23:59:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:11:56 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997el known as the Schnakenberg model. With our approach, we obtain conditions on parameters of the system of the chemical reaction model which gives Hopf bifurcation. Using the Lyapunov function we show the stability of Hopf bifurcation. We illustrate the results with a numerical example.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定边县| 两当县| 贺州市| 子洲县| 高唐县| 通化市| 松溪县| 成安县| 墨玉县| 临洮县| 铜鼓县| 古蔺县| 德州市| 卢湾区| 襄垣县| 新津县| 赣州市| 石柱| 东乡县| 惠来县| 武乡县| 阳信县| 炎陵县| 同心县| 安泽县| 汝阳县| 蒙阴县| 贡觉县| 林州市| 平度市| 昌都县| 都安| 佳木斯市| 泰兴市| 四会市| 越西县| 凤山县| 黑河市| 富裕县| 肃南| 汽车|