找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2021 The Edi

[復制鏈接]
樓主: 憑票入場
21#
發(fā)表于 2025-3-25 06:02:37 | 只看該作者
Springer Proceedings in Complexityhttp://image.papertrans.cn/012/image/100306.jpg
22#
發(fā)表于 2025-3-25 10:57:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:43:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:00 | 只看該作者
G. Cvirn,S. Gallistl,J. Kutschera,W. Muntean Thus, the analysis by statistical methods (the time variation of the standard deviation of the component signals of the electroencephalogram, the time variation of the signal variance, the time variation of the skewness, the time variation of the kurtosis, the construction of the recurrence maps co
26#
發(fā)表于 2025-3-26 00:16:59 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997on given by a piecewise constant function which consists of five steps in the form .The considered model is quite simple as a mathematical expression, but with complex dynamics of its solutions. The model is highly sensitive to initial conditions and parameters. Small differences in an initial value
27#
發(fā)表于 2025-3-26 06:07:46 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997nside . symmetric plane-wave spacetimes and correspond to local extrema of the energy functional. They are static in . and stationary in .. Chaos appears at the level of radial stability analysis through the explicitly derived spectrum of eigenvalues. The angular perturbation analysis is suggestive
28#
發(fā)表于 2025-3-26 08:31:00 | 只看該作者
https://doi.org/10.1007/978-3-642-59915-6ginally transformed from the well-known van der Pol model. The complexity of the neural dynamical models consist of multi-parameter nonlinear systems often allow studying only a particular case for some given values of parameters and prevent obtaining general results. In this study, we present gener
29#
發(fā)表于 2025-3-26 15:37:33 | 只看該作者
30#
發(fā)表于 2025-3-26 17:58:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平山县| 乐平市| 衡阳市| 石棉县| 易门县| 宁晋县| 博野县| 牡丹江市| 黄平县| 红安县| 吉隆县| 慈利县| 荣成市| 乳源| 威远县| 六安市| 杂多县| 丽水市| 太白县| 江川县| 临邑县| 永善县| 商南县| 浙江省| 香港 | 西青区| 长治县| 东安县| 会东县| 深圳市| 德令哈市| 吉隆县| 高唐县| 莆田市| 墨竹工卡县| 泸溪县| 临澧县| 正宁县| 淄博市| 汤阴县| 富锦市|