找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
樓主: industrious
11#
發(fā)表于 2025-3-23 13:36:45 | 只看該作者
Ulrich Spandau,Mitrofanis PavlidisIn this lecture, I’ll present results obtained by various new methods. My choice is rather encompassing. There are some attempts, which belong among those described in my Lecture IV, on the na?ve approach. Others involve penetrating studies of the class group. And entirely new avenues are opening with ideas from the theory of algebraic functions.
12#
發(fā)表于 2025-3-23 14:48:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:23:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:46:58 | 只看該作者
Overview: 978-1-4419-2809-2978-1-4684-9342-9
15#
發(fā)表于 2025-3-24 02:36:41 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0er than Fermat’s time. As Zassenhaus kindly pointed out to me, 2 is the oddest of the primes. Among its special properties, this oddest of all the primes is even; it is also the only exponent for which it is known that the Fermat equation has a nontrivial solution.
16#
發(fā)表于 2025-3-24 08:14:29 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Fermat’s.
17#
發(fā)表于 2025-3-24 13:10:02 | 只看該作者
18#
發(fā)表于 2025-3-24 15:48:04 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
19#
發(fā)表于 2025-3-24 19:13:52 | 只看該作者
https://doi.org/10.1007/978-1-4684-9342-9Fermatsches Problem; Mersenne prime; arithmetic; elliptic curve; number theory; prime number
20#
發(fā)表于 2025-3-25 01:44:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
孟村| 武胜县| 玉溪市| 台南市| 旺苍县| 富源县| 尉犁县| 武义县| 东辽县| 萨迦县| 丰县| 历史| 吉安县| 洛扎县| 尤溪县| 大邑县| 永宁县| 富裕县| 湘乡市| 板桥市| 阿拉尔市| 鄂尔多斯市| 保定市| 海原县| 龙江县| 砀山县| 耒阳市| 广元市| 福泉市| 蕉岭县| 南川市| 新龙县| 安塞县| 嫩江县| 湖州市| 怀远县| 伊吾县| 沙雅县| 宁远县| 乐业县| 北海市|