找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13 Lectures on Fermat‘s Last Theorem; Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti

[復(fù)制鏈接]
查看: 35105|回復(fù): 53
樓主
發(fā)表于 2025-3-21 17:57:10 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱13 Lectures on Fermat‘s Last Theorem
影響因子2023Paulo Ribenboim
視頻videohttp://file.papertrans.cn/101/100297/100297.mp4
圖書封面Titlebook: 13 Lectures on Fermat‘s Last Theorem;  Paulo Ribenboim Book 1979 Springer-Verlag New York 1979 Fermatsches Problem.Mersenne prime.arithmeti
Pindex Book 1979
The information of publication is updating

書目名稱13 Lectures on Fermat‘s Last Theorem影響因子(影響力)




書目名稱13 Lectures on Fermat‘s Last Theorem影響因子(影響力)學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem網(wǎng)絡(luò)公開度




書目名稱13 Lectures on Fermat‘s Last Theorem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem被引頻次




書目名稱13 Lectures on Fermat‘s Last Theorem被引頻次學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem年度引用




書目名稱13 Lectures on Fermat‘s Last Theorem年度引用學(xué)科排名




書目名稱13 Lectures on Fermat‘s Last Theorem讀者反饋




書目名稱13 Lectures on Fermat‘s Last Theorem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:05 | 只看該作者
https://doi.org/10.1007/978-3-319-19776-0d not be looked down on. On the contrary, they show much ingenuity, and they have helped to understand the intrinsic difficulties of the problem. I’ll point out, in various cases, how these attempts have brought to light quite a number of other interesting, perhaps more difficult problems than Ferma
地板
發(fā)表于 2025-3-22 04:59:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:03:42 | 只看該作者
Kentaro Takami,Luciano Rezzolla,Luca Baiottients. He was able to derive congruences, involving Bernoulli numbers, which must be satisfied by any would-be solution. From these congruences, he derived specific divisibility properties about Bernoulli numbers.
6#
發(fā)表于 2025-3-22 13:53:22 | 只看該作者
Ulrich Spandau,Mitrofanis Pavlidision to the intrinsic interest of this modified problem, I mentioned in my fourth lecture how Sophie Germain’s criterion for the first case involves Fermat’s congruence modulo some prime. Accordingly, I will begin by studying the Fermat equation over prime fields.
7#
發(fā)表于 2025-3-22 20:03:34 | 只看該作者
Using Magentix2 in Smart-Home EnvironmentsPierre de Fermat (1601–1665) was a French judge who lived in Toulouse. He was a universal spirit, cultivating poetry, Greek philology, law but mainly mathematics. His special interest concerned the solutions of equations in integers.
8#
發(fā)表于 2025-3-22 21:51:02 | 只看該作者
9#
發(fā)表于 2025-3-23 02:23:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:28:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 陆丰市| 舞阳县| 大关县| 河东区| 鹿泉市| 腾冲县| 方城县| 周至县| 惠安县| 赤壁市| 南靖县| 阳信县| 比如县| 江口县| 故城县| 公安县| 禄丰县| 邯郸县| 彭泽县| 恩平市| 共和县| 涟水县| 两当县| 抚顺县| 淅川县| 卫辉市| 从江县| 石棉县| 昌平区| 滨海县| 娄底市| 临武县| 东至县| 修武县| 巴林左旗| 灵丘县| 日照市| 天门市| 莲花县| 绥芬河市|