找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Integral Operators on L 2 Spaces; Paul Richard Halmos,Viakalathur Shankar Sunder Book 1978 Springer-Verlag Berlin Heidelberg 1978

[復(fù)制鏈接]
樓主: 熱情美女
11#
發(fā)表于 2025-3-23 12:08:01 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:11 | 只看該作者
13#
發(fā)表于 2025-3-23 21:38:15 | 只看該作者
14#
發(fā)表于 2025-3-24 01:23:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:24:21 | 只看該作者
Measure Spaces,A matrix is a function. A complex . × . (rectangular) matrix, for example, is a function . from the Cartesian product {1,...,.} × {1,...,.} to the set ? of complex numbers; its value at the ordered pair <., .> is usually denoted by ... In this book it will always be denoted by the typographically and conceptually more convenient symbol .(., .).
16#
發(fā)表于 2025-3-24 09:25:17 | 只看該作者
Domains,The way a matrix acts is defined by the familiar formula . The generalization to arbitrary kernels is formally obvious: . Finite sums such as the ones in (1) can always be formed; integrals such as theones indicated in (2) may fail to exist and, even when they exist, may fail todefine well-behaved functions.
17#
發(fā)表于 2025-3-24 14:01:13 | 只看該作者
Examples,The easiest examples of bounded kernels are the square-integrable ones introduced in Lemma 4.1; they induce Hilbert-Schmidt operators. The examples that follow are different; they are, for one thing, not compact.
18#
發(fā)表于 2025-3-24 17:53:32 | 只看該作者
19#
發(fā)表于 2025-3-24 20:52:06 | 只看該作者
Carleman Kernels,There is a sense in which the most natural integral operators on .. are the ones induced by Carleman kernels (the semi-square-integrable kernels ., for which .(.,·)∈ ..(.) for almost every .).
20#
發(fā)表于 2025-3-25 00:56:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旬阳县| 中阳县| 贵定县| 珲春市| 遂川县| 恩平市| 巍山| 随州市| 南乐县| 临安市| 皋兰县| 杭州市| 灵武市| 合阳县| 贵港市| 青岛市| 五台县| 武威市| 澄江县| 临邑县| 高邮市| 江华| 林州市| 永和县| 葵青区| 大方县| 定远县| 祁连县| 长汀县| 原平市| 华坪县| 奉化市| 永福县| 霸州市| 花垣县| 台南市| 崇仁县| 岚皋县| 兰坪| 昌黎县| 泗阳县|