找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded Integral Operators on L 2 Spaces; Paul Richard Halmos,Viakalathur Shankar Sunder Book 1978 Springer-Verlag Berlin Heidelberg 1978

[復(fù)制鏈接]
樓主: 熱情美女
21#
發(fā)表于 2025-3-25 03:40:04 | 只看該作者
22#
發(fā)表于 2025-3-25 10:19:43 | 只看該作者
23#
發(fā)表于 2025-3-25 12:55:44 | 只看該作者
24#
發(fā)表于 2025-3-25 19:03:02 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:11 | 只看該作者
26#
發(fā)表于 2025-3-26 03:58:41 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:01 | 只看該作者
Energy transfer in concentrated systems,re cannot be one. Intuition seems to suggest that boundedness is a question of size: to be bounded is to be “small”, or in any event not too large, and every kernel that is smaller than a bounded one is itself bounded. Since kernels are complex-valued functions, “size” presumably refers to absolute
28#
發(fā)表于 2025-3-26 09:40:54 | 只看該作者
Luminescence in Electrochemistryty operator on ..(?.) (which is not an integral operator) and the tensor product of the identity operator on ..(?.) with a projection of rank 1 on ..(II) (which is an integral operator). What is the essential difference between these two kinds of examples?
29#
發(fā)表于 2025-3-26 16:12:04 | 只看該作者
Luminescence of Biopolymers and Cellsators? The question refers to unitary equivalence; in precise terms, it asks for a characterization of those operators . on ..(.) for which there exists a unitary operator . on ..(.) such that .* is integral.
30#
發(fā)表于 2025-3-26 18:26:35 | 只看該作者
Apparatus for Bioluminescence Measurements,ad of the existential one. In precise terms: under what conditions on an operator . on ..(.) does it happen that .* is an integral operator for every unitary . on ..(.)? When it does happen, the operator . will be called a . integral operator on ..(.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长岭县| 蒙阴县| 会同县| 阿鲁科尔沁旗| 金塔县| 蓝田县| 盘锦市| 桦甸市| 绵阳市| 理塘县| 河池市| 大埔县| 慈溪市| 延吉市| 和田市| 沾益县| 遂昌县| 和田市| 根河市| 武鸣县| 大安市| 安仁县| 鸡西市| 兴业县| 竹溪县| 新河县| 奉贤区| 江北区| 鄂温| 太仆寺旗| 梧州市| 潍坊市| 新化县| 常宁市| 梁平县| 阳东县| 南京市| 玉门市| 揭西县| 卓资县| 陇南市|