找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[復(fù)制鏈接]
樓主: Destruct
21#
發(fā)表于 2025-3-25 05:56:40 | 只看該作者
On Automorphic Functions of Half-Integral Weight with Applications to Elliptic Curves,The theory of automorphic forms of 1/2-integral weight has attracted a considerable amount of attention in recent years. The striking difference between the case of integral and 1/2-integral weight is the fact that the Fourier coefficients of 1/2-integral weight forms are expressible in terms of the values of L-functions.
22#
發(fā)表于 2025-3-25 08:04:56 | 只看該作者
,Remarks on Equations Related to Fermat’s Last Theorem,For odd k, define θ(k) as the least value of s such that.has a non-trivial Solution over the integers. Fermat’s Last Theorem impl ies that θ(k) > 3 for odd k > 3.
23#
發(fā)表于 2025-3-25 13:33:19 | 只看該作者
The Cubic Thue Equation,Fix.a cubic form with non-zero discriminant; and let
24#
發(fā)表于 2025-3-25 16:42:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:24:52 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:35 | 只看該作者
https://doi.org/10.1007/978-1-4899-6699-5boundary element method; number theory; theorem
27#
發(fā)表于 2025-3-26 05:08:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:18:50 | 只看該作者
Some Remarks on Weierstrass Points,on S, different from 0, which vanishes at p to order at least g. The set of Weierstrass points on S is nonempty and finite; indeed, each Weierstrass point is assigned a positive integer called the Weierstrass weight, and then one has the result that the sum of the weights of all Weierstrass points on S is (g?l)g(g+l).
29#
發(fā)表于 2025-3-26 15:59:25 | 只看該作者
30#
發(fā)表于 2025-3-26 20:13:29 | 只看該作者
978-0-8176-3104-8Springer Science+Business Media New York 1982
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 20:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岑巩县| 土默特左旗| 永靖县| 舒城县| 淮阳县| 察隅县| 乌鲁木齐市| 甘孜县| 武穴市| 淅川县| 静乐县| 吉林市| 巴青县| 缙云县| 溆浦县| 托里县| 巴林右旗| 许昌市| 九寨沟县| 荃湾区| 高邮市| 南城县| 广水市| 施秉县| 偏关县| 大兴区| 东台市| 霍林郭勒市| 栖霞市| 崇州市| 儋州市| 靖西县| 闽侯县| 资溪县| 乌海市| 观塘区| 枣庄市| 页游| 庆城县| 钟祥市| 涿州市|