找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Handbook for Automatic Computation; Volume II: Linear Al J. H. Wilkinson,C. Reinsch,F. L. Bauer,A. S. House Book 1971 Springer-Verlag Berli

[復(fù)制鏈接]
樓主: 民俗學(xué)
11#
發(fā)表于 2025-3-23 12:05:10 | 只看該作者
https://doi.org/10.1007/978-0-387-28822-2If . is a non-singular matrix then, in general, it can be factorized in the form . = ., where . is lower-triangular and . is upper-triangular. The factorization, when it exists, is unique to within a non-singular diagonal multiplying factor.
12#
發(fā)表于 2025-3-23 15:55:45 | 只看該作者
13#
發(fā)表于 2025-3-23 21:46:43 | 只看該作者
https://doi.org/10.1007/978-3-319-41585-7Let . be a matrix of . rows and . columns, .≦.. If and only if the columns are linearly independent, then for any vector . there exists a unique vector . minimizing the Euclidean norm of ..
14#
發(fā)表于 2025-3-24 00:40:11 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:32 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:42 | 只看該作者
https://doi.org/10.5822/978-1-61091-205-1In [1] an algorithm was described for carrying out the . algorithm for a real symmetric matrix using shifts of origin. This algorithm is described by the relations.where .. is orthogonal, .. is lower triangular and .. is the shift of origin determined from the leading 2×2 matrix of ...
17#
發(fā)表于 2025-3-24 11:21:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:44:01 | 只看該作者
Symmetric Decomposition of a Positive Definite MatrixThe methods are based on the following theorem due to . [.].
19#
發(fā)表于 2025-3-24 21:26:37 | 只看該作者
20#
發(fā)表于 2025-3-25 02:18:59 | 只看該作者
Symmetric Decomposition of Positive Definite Band MatricesThe method is based on the following theorem. If . is a positive definite matrix of band form such that.then there exists a real non-singular lower triangular matrix . such that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商都县| 定结县| 大石桥市| 南川市| 兴安县| 奈曼旗| 邯郸市| 荆州市| 安宁市| 格尔木市| 灯塔市| 乌兰察布市| 乌鲁木齐县| 盘锦市| 绍兴县| 南丹县| 当阳市| 桐城市| 乌兰浩特市| 福鼎市| 兴文县| 塔城市| 始兴县| 桦甸市| 田林县| 林口县| 高台县| 玉溪市| 崇义县| 务川| 清新县| 石景山区| 江达县| 会同县| 黑龙江省| 富民县| 轮台县| 乌海市| 湘潭市| 民乐县| 阿勒泰市|