找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Volume Conjecture for Knots; Hitoshi Murakami,Yoshiyuki Yokota Book 2018 The Author(s), under exclusive licence to Springer Nature Singapo

[復(fù)制鏈接]
樓主: culinary
21#
發(fā)表于 2025-3-25 04:22:34 | 只看該作者
Volume Conjecture, invariant. The volume conjecture states that this function would grow exponentially with respect to . and its growth rate would give the simplicial volume of the knot complement. In this section we describe the volume conjecture and give proofs for the figure-eight knot and for the torus knot .(2, 2.?+?1).
22#
發(fā)表于 2025-3-25 09:46:28 | 只看該作者
23#
發(fā)表于 2025-3-25 12:39:58 | 只看該作者
24#
發(fā)表于 2025-3-25 17:37:52 | 只看該作者
25#
發(fā)表于 2025-3-25 23:59:00 | 只看該作者
26#
發(fā)表于 2025-3-26 02:58:34 | 只看該作者
Generalizations of the Volume Conjecture, imaginary part of .. We expect the (.) Chern–Simons invariant to appear. Secondly, we refine the conjecture by considering more precise approximation of the colored Jones polynomial. We conjecture that the Reidemeister torsion would appear. Lastly, we perturb . in . slightly and see what happens to
27#
發(fā)表于 2025-3-26 06:05:04 | 只看該作者
Book 2018the knot complement. Here the colored Jones polynomial is a generalization of the celebrated Jones polynomial and is defined by using a so-called .R.-matrix that is associated with the .N.-dimensional representation of the Lie algebra sl(2;.C.). The volume conjecture was first stated by R. Kashaev i
28#
發(fā)表于 2025-3-26 11:51:04 | 只看該作者
978-981-13-1149-9The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
29#
發(fā)表于 2025-3-26 13:40:35 | 只看該作者
30#
發(fā)表于 2025-3-26 20:40:51 | 只看該作者
R-Matrix, the Colored Jones Polynomial, and the Kashaev Invariant,In this chapter we give definitions of the colored Jones polynomial. To do that we use a braid presentation and a knot diagram. Kashaev’s invariant is obtained as a specialization of the colored Jones polynomial.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桦川县| 米林县| 吕梁市| 滨海县| 花莲县| 福海县| 武川县| 佛山市| 长海县| 博爱县| 江城| 广汉市| 双辽市| 湘潭市| 五家渠市| 增城市| 吉木萨尔县| 林州市| 从江县| 柳林县| 永济市| 海安县| 安岳县| 台湾省| 泗水县| 崇左市| 英吉沙县| 冀州市| 南宫市| 南陵县| 中牟县| 泸溪县| 浦北县| 潮州市| 兴安县| 双柏县| 固原市| 玉林市| 栖霞市| 新建县| 惠来县|