找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Vitushkin’s Conjecture for Removable Sets; James J. Dudziak Book 2010 Springer Science+Business Media, LLC 2010 Analytic capacity.Arclengt

[復(fù)制鏈接]
查看: 50768|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:08:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets
編輯James J. Dudziak
視頻videohttp://file.papertrans.cn/984/983980/983980.mp4
概述Presents a complete proof of a major recent accomplishment of modern complex analysis, the affirmative resolution of Vitushkin‘s conjecture.Includes Melnikov and Verdera‘s proof of Denjoy‘s conjecture
叢書(shū)名稱(chēng)Universitext
圖書(shū)封面Titlebook: Vitushkin’s Conjecture for Removable Sets;  James J. Dudziak Book 2010 Springer Science+Business Media, LLC 2010 Analytic capacity.Arclengt
描述.Vitushkin‘s conjecture, a special case of Painlevé‘s problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arc length measure.? Chapters 6-8 of this carefully written text present a major recent accomplishment of modern complex analysis, the affirmative resolution of this conjecture.? Four of the five mathematicians whose work solved Vitushkin‘s conjecture have won the prestigious Salem Prize in analysis..?Chapters 1-5 of this book provide important background material on removability, analytic capacity, Hausdorff measure, arc length measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin‘s conjecture.? The fourth chapter contains a proof of Denjoy‘s conjecture that employs Melnikov curvature.? A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin‘s conjecture.? Although standard notation is used throughout, there is a symbol glossary at the back of the book for the reader‘s convenience..?This text can be used for a topics course or se
出版日期Book 2010
關(guān)鍵詞Analytic capacity; Arclength measure; Argument principle; Complex analysis; Garabedian duality; Hausdorff
版次1
doihttps://doi.org/10.1007/978-1-4419-6709-1
isbn_softcover978-1-4419-6708-4
isbn_ebook978-1-4419-6709-1Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer Science+Business Media, LLC 2010
The information of publication is updating

書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets影響因子(影響力)




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets被引頻次




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets被引頻次學(xué)科排名




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets年度引用




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets年度引用學(xué)科排名




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets讀者反饋




書(shū)目名稱(chēng)Vitushkin’s Conjecture for Removable Sets讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:03 | 只看該作者
0172-5939 Includes Melnikov and Verdera‘s proof of Denjoy‘s conjecture.Vitushkin‘s conjecture, a special case of Painlevé‘s problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable
板凳
發(fā)表于 2025-3-22 03:03:37 | 只看該作者
James J. Dudziak Besserung durchmacht, unabh?ngig davon, welche Behandlungsma?nahmen ergriffen werden. Trotzdem gibt es einige Arbeiten, in denen es gelang, zwischen Erst- und Zweitge- neration-Antidepressiva zu differenzieren.
地板
發(fā)表于 2025-3-22 05:47:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:27 | 只看該作者
James J. Dudziak the gut lumen to the serum of the newborn occurs. The present preliminary studies are concerned with examining the kinetics of binding of rat and bovine IgG to isolated brushborders prepared from neonatal rat jejunum.
6#
發(fā)表于 2025-3-22 13:47:32 | 只看該作者
James J. Dudziakfor altered sensitivity to drugs. Apart from the various factors known to influence pharmacokinetics of drugs in the elderly, as discussed in Chapter 8, other physical or mental illnesses and some social factors probably also contribute to this increased incidence of adverse effects.
7#
發(fā)表于 2025-3-22 17:13:11 | 只看該作者
8#
發(fā)表于 2025-3-22 21:28:14 | 只看該作者
Removable Sets and Hausdorff Measure, 2.1 through 2.4 below are enough to get us through to the end of Chapter 4. It is only after, in Section 5.1, that we shall need to take up the fact that Hausdorff measure is indeed a positive measure defined on a .-algebra containing the Borel subsets of ?!
9#
發(fā)表于 2025-3-23 04:10:18 | 只看該作者
,A Solution to Vitushkin’s Conjecture Modulo Two Difficult Results,he converse becomes true when the compact set in question is restricted in some suitable way – in that case, restricted to be a subset of a rectifiable curve. The restriction to make in the case now facing us is clear because the Joyce–M?;rters set, although of Hausdorff dimension one, has . linear Hausdorff measure (Proposition 4.34).
10#
發(fā)表于 2025-3-23 07:57:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萨迦县| 南陵县| 泰来县| 台中县| 卓尼县| 墨江| 奉化市| 天门市| 桐柏县| 定南县| 高青县| 凉城县| 高陵县| 新宁县| 久治县| 深水埗区| 剑阁县| 海盐县| 渭南市| 北流市| 肥乡县| 新泰市| 宁强县| 南城县| 永寿县| 察哈| 仁化县| 湟中县| 怀来县| 广丰县| 云梦县| 安仁县| 赤壁市| 南丰县| 鸡东县| 界首市| 稷山县| 金昌市| 璧山县| 平江县| 临海市|