找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualization and Processing of Tensor Fields; Advances and Perspec David Laidlaw,Joachim Weickert Book 2009 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: Nixon
31#
發(fā)表于 2025-3-26 22:47:43 | 只看該作者
Monogenic Curvature Tensor as Image Models. By combining differential geometry and Clifford analysis, the monogenic curvature tensor can be derived to perform a split of identity and to enable simultaneous estimation of local amplitude, phase, main orientation, and angle of intersection in a monogenic scale-space framework.
32#
發(fā)表于 2025-3-27 02:30:04 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:38 | 只看該作者
Coordinates-Based Diffusion Over the Space of Symmetric Positive-Definite Matricescase, the image is divided into voxels where each voxel is described by a 3 × 3 symmetric positive-definite (SPD) matrix. In this chapter, we present an intrinsic approach for diffusion over the space of n × n symmetric positive-definite matrices, denoted by P.. The basis of this framework is the de
34#
發(fā)表于 2025-3-27 11:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 15:17:57 | 只看該作者
An Operator Algebraic Inverse Scale Space Method for Symmetric Matrix Valued Imagestions. In this context, we can roughly divide the methodology into three different formulations, namely the scale space formulation, the regularization formulation, and the inverse scale space formulation. In this chapter, we propose an inverse scale space formulation for matrix valued images using
36#
發(fā)表于 2025-3-27 18:07:05 | 只看該作者
Modelling, Fitting and Sampling in Diffusion MRIesign, as well as various objective functions for model fitting.Experiments and results compare the different methods and provide insight into the accuracy with which we can measure axon density and diameters.
37#
發(fā)表于 2025-3-27 22:12:44 | 只看該作者
Analysis of Distance/Similarity Measures for Diffusion Tensor Imagingxpect that this framework will help in the initial selection of a measure for a given application and to identify when the generation of a new measure is needed. This framework will also allow the comparison of new measures with existing ones.
38#
發(fā)表于 2025-3-28 02:52:19 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:52 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄垣县| 宜良县| 揭东县| 天柱县| 平度市| 基隆市| 湖北省| 湖北省| 平遥县| 胶州市| 共和县| 德庆县| 松江区| 海淀区| 揭东县| 隆德县| 武城县| 保德县| 滕州市| 泾阳县| 西乌珠穆沁旗| 厦门市| 凤庆县| 都安| 上犹县| 黎平县| 墨竹工卡县| 元谋县| 蒙自县| 晴隆县| 永昌县| 南江县| 都江堰市| 赞皇县| 河北省| 泾川县| 应用必备| 青海省| 永昌县| 新郑市| 石楼县|