找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualization and Processing of Tensor Fields; Advances and Perspec David Laidlaw,Joachim Weickert Book 2009 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: Nixon
31#
發(fā)表于 2025-3-26 22:47:43 | 只看該作者
Monogenic Curvature Tensor as Image Models. By combining differential geometry and Clifford analysis, the monogenic curvature tensor can be derived to perform a split of identity and to enable simultaneous estimation of local amplitude, phase, main orientation, and angle of intersection in a monogenic scale-space framework.
32#
發(fā)表于 2025-3-27 02:30:04 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:38 | 只看該作者
Coordinates-Based Diffusion Over the Space of Symmetric Positive-Definite Matricescase, the image is divided into voxels where each voxel is described by a 3 × 3 symmetric positive-definite (SPD) matrix. In this chapter, we present an intrinsic approach for diffusion over the space of n × n symmetric positive-definite matrices, denoted by P.. The basis of this framework is the de
34#
發(fā)表于 2025-3-27 11:24:00 | 只看該作者
35#
發(fā)表于 2025-3-27 15:17:57 | 只看該作者
An Operator Algebraic Inverse Scale Space Method for Symmetric Matrix Valued Imagestions. In this context, we can roughly divide the methodology into three different formulations, namely the scale space formulation, the regularization formulation, and the inverse scale space formulation. In this chapter, we propose an inverse scale space formulation for matrix valued images using
36#
發(fā)表于 2025-3-27 18:07:05 | 只看該作者
Modelling, Fitting and Sampling in Diffusion MRIesign, as well as various objective functions for model fitting.Experiments and results compare the different methods and provide insight into the accuracy with which we can measure axon density and diameters.
37#
發(fā)表于 2025-3-27 22:12:44 | 只看該作者
Analysis of Distance/Similarity Measures for Diffusion Tensor Imagingxpect that this framework will help in the initial selection of a measure for a given application and to identify when the generation of a new measure is needed. This framework will also allow the comparison of new measures with existing ones.
38#
發(fā)表于 2025-3-28 02:52:19 | 只看該作者
39#
發(fā)表于 2025-3-28 06:41:52 | 只看該作者
40#
發(fā)表于 2025-3-28 13:24:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛阳市| 肥城市| 什邡市| 平山县| 海口市| 江北区| 乌鲁木齐市| 聂荣县| 玛沁县| 城步| 白水县| 灵台县| 西昌市| 泸西县| 鄂温| 西丰县| 抚松县| 巴马| 比如县| 长葛市| 清水河县| 北票市| 剑阁县| 永顺县| 遂昌县| 陈巴尔虎旗| 顺平县| 吉木乃县| 麟游县| 蕲春县| 三江| 铜陵市| 文安县| 清流县| 白城市| 兰溪市| 炉霍县| 大同市| 汤阴县| 田阳县| 锦屏县|