找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Ingrid Hotz,Thomas Schultz Conference proceedings 2015 Spr

[復(fù)制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 13:39:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:17 | 只看該作者
A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractographyques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.
13#
發(fā)表于 2025-3-23 18:01:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:22 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:41 | 只看該作者
Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Fuh effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. Th
17#
發(fā)表于 2025-3-24 13:31:56 | 只看該作者
Finslerian Diffusion and the Bloch–Torrey Equation is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range
18#
發(fā)表于 2025-3-24 17:44:34 | 只看該作者
Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetriesibution functions (ODF), including the well-known von Mises-Fisher, Watson, and de la Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration parameter. Then, we use these elementary ODFs as building blocks to construct new ones with a specified material symmetry and deriv
19#
發(fā)表于 2025-3-24 21:53:49 | 只看該作者
Topology of 3D Linear Symmetric Tensor Fieldsrch results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields, and provide some novel insights on such fields. We also propose a number of hypotheses about linear tensor fields. We hope by studying linear tensor fields, we can gain more critical insights into the topology
20#
發(fā)表于 2025-3-25 03:14:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清丰县| 诏安县| 芷江| 汉源县| 桐乡市| 两当县| 万源市| 崇礼县| 台江县| 朔州市| 东丽区| 贵州省| 额尔古纳市| 玉林市| 东至县| 林西县| 雷山县| 吉木萨尔县| 泰兴市| 晋中市| 环江| 江都市| 长岛县| 郧西县| 汶川县| 铜鼓县| 镇平县| 莱阳市| 哈密市| 云南省| 开平市| 于都县| 四子王旗| 观塘区| 孝昌县| 忻州市| 香格里拉县| 上饶市| 义马市| 乌苏市| 高淳县|