找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Ingrid Hotz,Thomas Schultz Conference proceedings 2015 Spr

[復(fù)制鏈接]
樓主: Daidzein
11#
發(fā)表于 2025-3-23 13:39:03 | 只看該作者
12#
發(fā)表于 2025-3-23 16:46:17 | 只看該作者
A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractographyques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.
13#
發(fā)表于 2025-3-23 18:01:18 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:01:22 | 只看該作者
16#
發(fā)表于 2025-3-24 08:49:41 | 只看該作者
Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Fuh effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. Th
17#
發(fā)表于 2025-3-24 13:31:56 | 只看該作者
Finslerian Diffusion and the Bloch–Torrey Equation is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range
18#
發(fā)表于 2025-3-24 17:44:34 | 只看該作者
Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetriesibution functions (ODF), including the well-known von Mises-Fisher, Watson, and de la Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration parameter. Then, we use these elementary ODFs as building blocks to construct new ones with a specified material symmetry and deriv
19#
發(fā)表于 2025-3-24 21:53:49 | 只看該作者
Topology of 3D Linear Symmetric Tensor Fieldsrch results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields, and provide some novel insights on such fields. We also propose a number of hypotheses about linear tensor fields. We hope by studying linear tensor fields, we can gain more critical insights into the topology
20#
發(fā)表于 2025-3-25 03:14:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资溪县| 华池县| 遵化市| 韶关市| 达州市| 黄冈市| 泽库县| 弋阳县| 集安市| 上栗县| 增城市| 平昌县| 万年县| 正镶白旗| 绍兴县| 无为县| 晋江市| 百色市| 宁津县| 冀州市| 镇沅| 钟山县| 右玉县| 思茅市| 满洲里市| 酒泉市| 重庆市| 上蔡县| 平乡县| 洪江市| 丰城市| 巴塘县| 寿宁县| 夏邑县| 阿拉尔市| 偃师市| 庄浪县| 大连市| 台江县| 林州市| 虞城县|