找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Visualisierung in Mathematik, Technik und Kunst; Grundlagen und Anwen Andreas Dress,Gottfried J?ger Book 1999 Springer Fachmedien Wiesbaden

[復(fù)制鏈接]
樓主: 孵化
21#
發(fā)表于 2025-3-25 05:00:42 | 只看該作者
J?rg R. J. Schirra,Thomas Strothottevide students of mathematics with a set of accessible, hands-on experiences with fractals and their underlying mathematical principles and characteristics. Another is to show how fractals connect to many different aspects of mathematics and how the study of fractals can bring these ideas together. A
22#
發(fā)表于 2025-3-25 09:55:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:58:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:41:50 | 只看該作者
Herbert W. Frankely R. A. Earnshaw H. Jones 1 March 1990 Introduction Fractals and Chaos The word ‘fractal‘ was coined by Benoit Mandelbrot in the late 1970s, but objects now defined as fractal in form have been known to artists and mathematicians for centuries. Mandelbrot‘s definition-"a set whose Hausdorff dimensi
25#
發(fā)表于 2025-3-25 21:55:10 | 只看該作者
26#
發(fā)表于 2025-3-26 00:10:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:51 | 只看該作者
Gabor Székelytial equations containing some material-dependent parameters. The relatively general validity of the formalism makes the study of fracture in this intermediate (or mesoscopic) range of length scales particularly attractive to statistical physicists. If the reader wants to know more about recent deve
28#
發(fā)表于 2025-3-26 10:38:35 | 只看該作者
29#
發(fā)表于 2025-3-26 16:30:09 | 只看該作者
Günter Pomaskao a multidimensional phase space. The trajectories within this phase space of the system converge to a subspace which is the geometrical attractor for the system. We infer from this that our deforming model rock can be described by a set of deterministic laws. The dimension of this attractor is abou
30#
發(fā)表于 2025-3-26 17:48:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆安县| 曲麻莱县| 利辛县| 镇远县| 买车| 门头沟区| 三门峡市| 会泽县| 望都县| 兰溪市| 龙江县| 顺平县| 东城区| 乌鲁木齐县| 华容县| 洛阳市| 错那县| 万州区| 柳州市| 昌黎县| 普定县| 澄江县| 抚松县| 临夏市| 遂平县| 成安县| 郯城县| 新营市| 浠水县| 深水埗区| 营山县| 忻州市| 息烽县| 霞浦县| 开江县| 磴口县| 罗定市| 文昌市| 万盛区| 远安县| 克东县|